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Abstract. We present an online system for automatic smart face mor-
phing, which can be accessed at http://facewarping.com. This system
morphs the user-uploaded image to “beautify” it by embedding fea-
tures from a user-selected celebrity. This system consists of three major
modules: facial feature point detection, geometry embedding, and image
warping. To embed the features of a celebrity face and at the same
time preserve the features of the original face, we formulate an optimiza-
tion problem which we call prior multidimensional scaling (prior MDS).
We propose an iterated Levenberg-Marquardt algorithm (ILMA) to effi-
ciently solve prior MDS in the general case. This online system allows the
user to configure the morphing parameters, and has been tested under
different conditions.

Keywords: Feature point detection · Geometry embedding · Image
warping · Multidimensional scaling

1 Introduction

What features make a face look aesthetically pleasing? Though the answers may
differ from person to person, depending on his cultural background, gender,
age, experiences, and personal taste, we know that many celebrities are widely
recognized as aesthetically appealing in their appearance. The underlying mech-
anism is that there are some widely existing standards people subconsciously
use to judge the aesthetics of a face, such as eye distance and size of mouth.
There has been work to study these underlying standards, or to learn them from
data, such as [1–4]. In all these papers, facial geometry is used as an important
feature to represent the attractiveness. In [1], the authors also use color and
texture features. In [2], the authors consider hair color, facial symmetry, and
skin smoothness. In [3], more higher-level semantics-sensitive features are used,
including HOG, GIST, L∗a∗b∗ color histograms, and SIFT features.

In our morphing system, we only change the facial geometry of the user-
uploaded image, while preserving other factors of the original image such as color
and texture. This ensures that the resulting image still looks natural without
conspicuous artifacts. Like many previous efforts, we detect salient facial feature
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points (also referred to as landmarks) from the face image, and use the distances
between each pair of these points as our geometry features. Though similar to
Leyvand et al.’s engine [4], our system differs in numerous aspects: (1) The
facial points detection algorithm we use is the extended active shape model
(ASM) with 2D profiles and trimmed covariance matrix [5], while in [4] the
authors use the Bayesian Tangent Shape Model (BTSM) [6]. (2) We embed
the prior constraint of the original face directly into the target function of the
multidimensional scaling (MDS) problem, and solve it with iterated Levenberg-
Marquardt algorithm (ILMA), while in [4] the authors simply assume that the
solution to the standard MDS should be close to original feature points if the
algorithm is well initialized. (3) For image warping, we use the thin-plate splines
method [7], while in [4] the authors use multilevel free-form deformation (MFFD)
[8]. The choice of these primitive algorithms for each module of our system is
a comprehensive consideration of not only efficiency and performance, but also
configurability, difficulty of implementation, and code maintainability.

2 System Overview

A flowchart of our system pipeline is provided in Fig. 1. First, the user can either
upload an image, provide the URL to an image on the Internet, or click a test
image from the AR face dataset [9]. This user-specified image will be referred
to as the original image in the context. Next, the user selects a reference image
from the MSRA-CFW dataset of celebrity faces [10]. Then the user specifies sev-
eral parameters of the morphing process. Current parameters include whether to
warp the eye, whether to warp the mouth, and the morphing degree 1−μ. With
these inputs, our system first detects the facial landmarks of the original image,
and looks up the pre-computed facial landmarks of the reference image. It then
calls the iterated Levenberg-Marquardt algorithm to compute the positions of
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Fig. 1. A flowchart of our online morphing system.
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desired landmarks. Finally, the system uses thin-plate splines warping to gener-
ate the warped image and displays it on the web page.

3 Feature Point Detection

Facial feature points, such as eye centers, nose tips and mouth corners, are
semantically well defined to represent the shape of a face. Existing algorithms
for facial feature points detection include random ferns regression [11], convolu-
tional neural network (CNN) regression [12], and the Active Shape Model (ASM)
[13] method, which has been extensively used in many other applications. The
basic idea of ASM is to iteratively fit feature points in a face image by alternat-
ing between the steps of adjusting feature points with template matching and
conforming the face shape to a global shape model. A number of extensions of
ASM have been proposed. Bayesian Tangent Shape Model (BTSM) [6] is one of
them, which designs a Bayesian approach for shape registration, and has been
used in [4] for face beautification. Our system adopts the latest extension of ASM
[5], which integrates a bunch of techniques to improve ASM in a sound man-
ner. It achieves state-of-the-art accuracy with an improved efficiency, and thus is
more suitable for practical (especially web-based) applications. Our model uses
N = 77 landmarks (Fig. 2), and is trained on the MUCT data [14].

Before applying ASM for face detection, the bounding box of the face is
detected using Haar feature-based cascade classifiers [15].

Fig. 2. An example of the 77 facial feature points.
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4 Distance-Based Landmark Determination

Let the N landmark points of the reference face be Q = {q1, q2, . . . , qN}, and
the distance between two landmarks qi and qj be di,j . For the original face, the
landmark points are P = {p1, p2, . . . , pN}, and we morph the face such that each
original landmark point pi moves to a new position xi. To perform a distance-
preserving morphing, we hope the distances between the new positions are close
to those of the reference face. This is a standard multidimensional scaling (MDS)
problem [16], where we minimize a stress function S(·):

S(x1, . . . , xN ) =
∑

1≤i<j≤N

(||xi − xj || − di,j)2. (1)

There are lots of methods to solve the standard MDS problem:

min
x1,...,xN

S(x1, . . . , xN ), (2)

such as the iterative steepest descent approach by Kruskal [17] and the iterative
majorization algorithm (SMACOF) by de Leeuw [18]. According to Williams,
metric MDS problems can also be solved by recasting it to kernel PCA [19].

4.1 Prior Constraints by Original Face

The minimization problem in Eq. (2) has infinite many solutions since by repre-
senting a face with distances, we lose the location information of the face. Which
solution we get by solving the minimization problem depends on the algorithm
we use and the initialization of the algorithm. In [4], the authors did not add
any extra constraints to make the solution unique. Instead, they assumed that
using the original facial landmarks for initialization, the solution to the MDS
problem in Eq. (2) should guarantee a minute modification from the original
face. Although this assumption is empirically acceptable in many cases, if we
generalize to higher dimensions and more complicated problems, the quality of
different solutions of Eq. (2) may be very different. In our system, we address
this concern and ensure the uniqueness of the solution by elegantly adding the
prior knowledge of the original face directly into the stress function that we are
minimizing:

S̃(x1, . . . , xN ) =
μ

N

∑

1≤i≤N

||xi−pi||2+ 2(1 − μ)
N(N − 1)

∑

1≤i<j≤N

(||xi−xj ||−di,j)2. (3)

Here μ ∈ [0, 1] is a weight parameter balancing between the constraints of the
original face and the reference face. The 1

N and 2
N(N−1) are normalization factors

of the two summations. The first summation in Eq. (3) is the prior constraint of
the original face, and the second summation is the constraint of the reference
face, which is just the raw stress in Eq. (1) multiplied by a constant. If μ is small,
then the reference face has a larger weight. For this reason, we refer to the value
of 1 − μ as the morphing degree in the context (Fig. 5).
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To minimize the new stress function:

min
x1,...,xN

S̃(x1, . . . , xN ), (4)

we cannot directly use the standard SMACOF algorithm or kernel PCA method.
Here we propose an iterative least squares solution to the prior MDS opti-
mization problem Eq. (4). We note that in Eq. (4), the new stress function
S̃(x1, . . . , xN ) is minimized with respect to X = {x1, . . . , xN}, which has N ×m
dimensions, where m is the dimension of each xi. In our face morphing problem,
N = 77 and m = 2. In a more general case of the prior MDS problem, when both
N and m are large, this nonlinear optimization problem becomes computation-
ally intractable if we attempt to solve for all dimensions in one step. Instead, we
iteratively optimize each xi while fixing all other points. In each step, we min-
imize the stress function S̃(x1, . . . , xN ) with respect to only an m-dimensional
variable, instead of N ×m, which greatly reduces the complexity of the optimiza-
tion problem. The subproblem can be viewed as a least squares problem, and
can be solved by the standard Levenberg-Marquardt algorithm [20,21]. Since
the total stress Eq. (3) is monotonically non-increasing through time, the con-
vergence of the optimization is guaranteed. We call our method the iterated
Levenberg-Marquardt algorithm (ILMA), which is detailed in Algorithm 1.

Algorithm 1. The iterated Levenberg-Marquardt algorithm (ILMA).
input :Target distances {di,j}, where 1 ≤ i < j ≤ N ;

Prior points P = {p1, . . . , pN};
Balancing parameter μ ∈ [0, 1];
Max number of iterations T ;
Exit threshold ε;

output: New points X = {x1, . . . , xN};

1 begin
2 for i ← 1 to N do
3 Initialize xi = pi;
4 end
5 for t ← 1 to T do
6 Generate a random permutation (r1, r2, . . . , rN ) of integers 1 to N ;
7 for i ← 1 to N do
8 Use the standard Levenberg-Marquardt algorithm to find the xri that

minimizes:

μ(N − 1)

2(1 − μ)
||xri − pri ||2 +

∑

j �=i

(||xri − xj || − dri,j)
2;

9 end

10 if ΔS̃/S̃ < ε then break

11 end
12 done
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4.2 Partial Distances

For all the distances {di,j}1≤i<j≤N , we may not want to give them all equal
weights. Some of the distances should be considered more important than others.
Thus for the second term of stress S̃(x1, . . . , xN ) in Eq. (3), we may rewrite it as:

2(1 − μ)
N(N − 1)

∑

1≤i<j≤N

βi,j(||xi − xj || − di,j)2 , (5)

where βi,j is the weight for distance di,j . With this change in the target stress
function, we can simply modify Algorithm 1 by changing the target function in
step 8 to:

μ(N − 1)
2(1 − μ)

||xri − pri ||2 +
∑

j �=i

βi,j(||xri − xj || − dri,j)
2 . (6)

4.3 Scale Invariance

To make sure our morphing algorithm is scale invariant, distance normalization
is necessary. We simply normalize the target distances of the celebrity such that
the mean distance of all landmark pairs of the celebrity equals that of the original
image. This operation is performed before the ILMA.

4.4 Local Geometry Preservation

People are sensitive to even very small shape changes of facial organs such as
eyes, the nose and the mouth. The optimization of landmarks in Sect. 4.1 gives
no consideration to this issue and in some cases the resulting facial organs look
unnatural. The work in [2] noticed this problem to the eye shapes, and applied
a linear transform on original facial points that relocates eyes by minimizing the
mean square distance between transformed position and the position resulted
from their beauty engine. While linear transform mitigates this problem, it still
cannot get rid of distortions. Our system addresses this issue by applying a rigid
transform to the points of each facial organ. It preserves the original organ shape
while adjusting its position close to the one optimized by our morphing engine.
Assume the two point sets P = {pi}1≤i≤N and X = {xi}1≤i≤N are the original
points of a facial organ and the ones from morphing engine, respectively. The
rigid transform takes the form:

p̃i = R · pi + T, (7)

where R is a rotation matrix and T is a translation vector:

R =
[

cos θ − sin θ
sin θ cos θ

]
, (8)

T =
[

tx
ty

]
. (9)
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We find R and T by minimizing
∑N

i=1 ||p̃i −xi||2, which can be efficiently solved
by using singular value decomposition (SVD) [22]. Then we replace xi with p̃i
for this facial organ in the system.

5 Image Warping

Given the original landmarks P = {p1, p2, . . . , pN} and the desired landmarks
X = {x1, x2, . . . , xN}, we want to warp the entire original image Io to a new
target image It, such that each pi is warped to the corresponding xi. We simply
use the thin-plate splines (TPS) warping method [7], where we find a backward
thin-plate splines function g(·), such that g(xi) = pi for i = 1, . . . , N . Then for
any pixel x in the target image It, we project it to p = g(x), interpolate the
pixel value of p in the original image Io, and assign the value to x in It.

6 Implementation Details

6.1 Hosting

We implemented our smart face morphing system as a web-based application
that can be accessed from any device equipped with a web browser. The front-end
of the system is implemented using JavaScript and CherryPy — a light-weight
Python web framework. The back-end of the system, which is the face morphing
engine, is implemented in C++, and we use OpenCV2 for basic image handling.
The website is currently hosted on a free-tier instance (known as t1.micro) of
Amazon Elastic Compute Cloud (EC2).

6.2 User Interface

The system allows users to upload an image, use a web image, or simply select
from sample testing images (AR face database [9]) as the input. The reference
dataset is a mixture of the MSRA-CFW dataset of celebrity faces [10] and images
that we scraped from Google Images using a Python script. For aesthetic reasons,
we only displayed a few reference images on the web page (Fig. 3). The system
also gives users options to enable/disable warping of the eyes or mouth, and
adjust the morphing degree 1 − μ of the prior MDS.

6.3 Border Preservation

When we warp the original image using the new desired facial feature points
X = {xi}1≤i≤N with thin-plate splines method, not only the facial region in the
image is warped, but also the background region is warped and distorted, which
is undesired. To preserve the background region, especially the image borders
which may cause severe artifacts, we add auxiliary points on the image borders in
the warping process. The four image corners plus three points on each border are
added to both the original and the reference landmark sets during the warping.
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Fig. 3. A screenshot of our web-based smart face morphing system. The image on the
left is the morphing result of an AR face image using a MSRA-CFW celebrity image as
the reference. The smaller image by the morphed image shows detected facial feature
points (blue) and desired facial feature points (red) superimposed on the original image.
Note that we added sixteen points on the image borders to both sets of facial feature
points to avoid deformation in the boundary region. In this example, both eyes warping
and mouth warping are enabled, and the morphing degree is 0.7 (Color figure online).

An example case of using and not using auxiliary points for border preservation
is shown in Fig. 4. We can observe that, without border preservation, the border
regions are distorted. If there are straight lines in the background region, they
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(a) (b) (c)

Fig. 4. Border preservation avoids distortion in the background. (a) Before morphing.
(b) With border preservation. (c) Without border preservation.

Fig. 5. The morphing degree 1 − μ determines the level of deformation.

will likely be curved and look very unnatural. Adding the auxiliary points does
not affect the warping effect in the facial region.

6.4 Running Time

On a 64-bit Windows 8 machine with 2.0 GHz Intel Core i7 CPU and 8 GB
memory, provided a 576 × 768 color image as input, the feature point detection
takes about 0.3 s, solving the prior MDS problem with ILMA takes about 0.005 s,
and the thin-plate splines warping takes about 0.4 s. On the Amazon web service
EC2, the entire morphing process also takes less than 1 s.

7 Conclusion

In this paper, we have presented an online smart face morphing engine. We
formulated a prior MDS problem which directly integrates the prior constraints
of the original face into the geometry embedding problem, and provided an
iterated Levenberg-Marquardt algorithm to find its unique solution. Although
the other algorithms in our system are pretty standard, one of our contribution
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is to assemble them into a fully-featured publicly accessible real-time web-based
system. Currently one limitation of our system is that when the subject in the
user-uploaded image wears glasses or other decorations, these objects will very
likely be distorted in the final image as the result of warping. In the future,
one improvement direction of our system is to re-train the active shape model
using a more comprehensive dataset which includes subjects from different ethnic
groups and different age groups, and also with different expressions, to ensure
more robust facial point detection. Another improvement direction is that we
can use GPU to further speed up our algorithms, especially the ASM and the
thin-plate splines warping.
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