
Tracking Tetrahymena Pyriformis Cells using Decision Trees

Quan Wang, Yan Ou, A. Agung Julius, Kim L. Boyer
Rensselaer Polytechnic Institute

wangq10@rpi.edu

Min Jun Kim
Drexel University

mkim@coe.drexel.edu

Abstract

Matching cells over time has long been the most dif-
ficult step in cell tracking. In this paper, we approach
this problem by recasting it as a classification problem.
We construct a feature set for each cell, and compute a
feature difference vector between a cell in the current
frame and a cell in a previous frame. Then we deter-
mine whether the two cells represent the same cell over
time by training decision trees as our binary classifiers.
With the output of decision trees, we are able to formu-
late an assignment problem for our cell association task
and solve it using a modified version of the Hungarian
algorithm.

1 Introduction

Researchers have been creating artificial magneto-
tactic Tetrahymena pyriformis (T. pyriformis) cells by
the internalization of iron oxide nano particles, and
controlling them with a time-varying external magnetic
field [2, 5]. To perform the multi-cell control task, it is
necessary to track the real-time position of each cell and
use it as the feedback for the control system. However,
this problem is very difficult because: the T. pyriformis
cells are moving fast in the field of view; several cells
may overlap and occlude each other; the appearances
of different cells can be similar; and the same cell may
change in appearance over time [4].

Decision tree was proposed as a powerful machine
learning technique, which can be used for both classifi-
cation and regression, and has been successfully applied
on practical systems such as the Kinect gaming platform
[6]. Since the decision tree can take very complicated
features as its input and at the same time, once a deci-
sion tree is trained, the decision procedure can be very
fast, it is ideal for real-time classification. We use de-
cision trees as a classifier to determine whether regions
segmented in neighboring and non-neighboring frames
represent the same T. pyriformis cell.

2 Background Subtraction

To extract the foreground regions of cells, we first
perform a background subtraction at each frame. There
are a number of well-known background subtraction al-
gorithms such as adaptive Gaussian mixture models.
Since the background in our video is simple and con-
sistent over time, we simply apply a median filter on
the time dimension for the first 20 frames to obtain
the background image. At each frame, we subtract the
background image from the current frame and take the
absolute value to obtain a difference image. Then we
apply thresholding, fill the morphological holes, and ex-
tract the connected regions as candidate T. pyriformis
cells.

3 Feature Extraction

After the region of each cell is segmented, we extract
features for each cell according to their shapes, gray-
level intensities, and the combination of both. Exam-
ples of the T. pyriformis cell appearance in our video are
shown in Figure 1 (pixel spacing = 2.32/2.32 µm). As-
sume a cell C in one frame consists of N pixels I(xi),
where i = 1, 2, . . . , N , and xi = (xi, yi) are the coor-
dinates of the ith pixel of C. We can define some useful
features for this cell, as follows.

Spatial Features The cell’s areaN and centroid xc =
(xc, yc), where xc = xi and yc = yi, are the most basic
features. Another useful spatial feature is the nth order
normalized inertia [1], which measures the circularity
of the shape, and is defined as

Jn(C) =

N∑
i=1

||xi − xc||n

N1+n/2
. (1)

Histogram Features Using only pixel intensities
without spatial positions, we can compute several his-

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-0-9 ©2012 ICPR 1843

togram features. First we have the mean and the stan-
dard deviation:

µ(C) =
1

N

N∑
i=1

I(xi), (2)

σ(C) =
1

N

√√√√ N∑
i=1

(I(xi)− µ(C))
2
. (3)

Then we have the standard moments such as the skew-
ness γ(C) and the kurtosis β(C):

γ(C) = E

[(
I(xi)− µ(C)

σ(C)

)3
]
, (4)

β(C) = E

[(
I(xi)− µ(C)

σ(C)

)4
]
, (5)

where E[·] denotes expectation. We also use the nth
order root of the nth order central moment Mn(C):

Mn(C) = n

√
E [(I(xi)− µ(C))

n
]. (6)

Composite Features Finally we can compute some
features that use both spatial information and pixel in-
tensities at the same time to capture the spatial distribu-
tion of pixel intensities. We first define the polynomial
distribution feature Pn(C):

Pn(C) =
1

N1+n/2

N∑
i=1

||xi − xc||n · I(xi). (7)

Then we define the Gaussian distribution feature
Gn(C):

Gn(C) =
1

N

N∑
i=1

exp

(
−||xi − xc||2

2n2

)
· I(xi). (8)

These composite features can be viewed as weighted
means of pixel intensities. For example, Pn(C) gives
larger weights to pixels far away from the center while
Gn(C) gives larger weights to pixels near the center.

4 Decision Trees

To use decision trees for the cell association prob-
lem, we first need to map the cell association problem
to a classification problem. For each cell L in a pre-
vious frame and each cell C in the current frame, we
need to know whether they are the same cell. Thus the
classification problem is to develop a binary classifier f
such that f(C,L) = 1 if C and L are the same cell, and
f(C,L) = 0 if they are not.

(a) (b)

Figure 1: Examples of the T. pyriformis cell appearance.

4.1 Feature Difference Vector

To simplify the input to the classifier, we define
a 23-dimensional feature difference vector v(C,L) =
(v1, v2, . . . , v23) for C and L. Each entry of this feature
difference vector reflects the difference of the two cells
in some aspect. v1 is the distance between the center of
C and the predicted center of L in the current frame. A
simple constant velocity assumption is used for the pre-
diction. For example, suppose the current frame is the
kth frame and the center of C is xc(C), the center of L
at the (k − 1)th frame was xc(L) and at the (k − 2)th
frame was x′c(L). Then the predicted center of L at the
current frame is xp(L) = 2xc(L) − x′c(L), and v1 is
defined as

v1 = ||xc(C)− xp(L)||. (9)

v2 is defined as the distance between the centers of the
two cells:

v2 = ||xc(C)− xc(L)||. (10)

Each of the other 21 entries of v(C,L) is defined as the
absolute value of the difference of some feature of C
and L. For example, let N(C) and N(L) be the areas
of C and L, respectively. Then we have

v3 = |N(C)−N(L)|, (11)
v4 = |µ(C)− µ(L)|. (12)

Similarly, v5 to v7 are defined using Equations (3) to
(5) respectively; v8 to v11 are defined using (6) for
n = 3, 4, 5, 6; v12 to v15 are defined using (1) for
n = 1, 2, 3, 0.5; v16 to v19 are defined using (7) for
n = 1, 2, 3, 0.5; and v20 to v23 are defined using (8)
for n = 2, 4, 6, 8. With these definitions, our classifier
f can be viewed as a mapping from the 23-dimensional
space to the {0, 1} set. Thus we denote it as f(v(C,L)).

4.2 Training a Decision Tree

As shown in Figure 2, a decision tree T consists of
leaf nodes and split (non-leaf) nodes. Each split node
consists of a threshold τ and an indicator k for a fea-
ture vk, where k = 1, 2, . . . , 23. To classify the feature

1844

Figure 2: Decision tree example. A decision tree T con-
sists of split nodes (blue) and leaf nodes (green). The
red arrows show the branching path for an input v.

difference vector v, one starts from the root and repeat-
edly compares its kth entry vk with the threshold τ to
decide whether to branch to the left sub-tree (if vk ≤ τ)
or right sub-tree (if vk > τ). The leaf node is a quantity
PT (v) indicating the probability of f(v(C,L)) = 1.

Since it is easy for a human to distinguish whether
two regions in different frames represent the same cell,
we can manually assign labels {y} to cell pairs from
neighboring frames in training videos and associate
these labels with extracted feature difference vectors
{v}. In this way we build our training data set D =
{(v, y)}, where y = f(v).

The training process follows a maximal entropy re-
duction procedure [6]:

1. Beginning from the root, consider a large set of
splitting candidates (k, τ) which covers all pos-
sible k and provides sufficiently delicate subdivi-
sions for each vk.

2. For each candidate (k, τ), we partition the training
set D = {(v, y)} into two subsets:

Dl(k, τ) = {(v, y)|vk ≤ τ}, (13)
Dr(k, τ) = D \Dl(k, τ). (14)

3. Find the candidate (k, τ) that maximizes the en-
tropy reduction G(k, τ):

(k∗, τ∗) = argmax
(k,τ)

G(k, τ), (15)

G(k, τ) = H(D)− |Dl(k, τ)|
|D|

H(Dl(k, τ))

−|Dr(k, τ)|
|D|

H(Dr(k, τ)), (16)

where H(·) denotes the Shannon entropy and | · |
denotes the cardinality of a set.

4. Use (k∗, τ∗) as the feature indicator and threshold
at the current split node, and repeat the above steps
for the left sub-tree with Dl(k

∗, τ∗) and right sub-
tree with Dr(k

∗, τ∗).

5. If the depth reaches the maximum, or the size (or
entropy) of the partitioned subset D̃ at the current
node is sufficiently small, then we set this node as
a leaf node, and the probability at this node is

PT =
|{(v, y) ∈ D̃|y = 1}|

|D̃|
. (17)

In our work, a tree T1 is trained usingD = {(v, y)}, and
another tree T2 is trained using D′ = {(v′, y)}, where
v′ = (v3, v4, . . . , v23) is the truncated feature difference
vector. Since T2 is trained without center position infor-
mation, we use T1 for cell association in neighboring
frames and T2 for cell association in non-neighboring
frames.

5 Association Rules

To track cells over time, we maintain a list {Lj} of
cells that have appeared in previous frames. The cell
association task is to determine which cell Lj should be
associated with the cell Ci in the current frame. Each
cell in the list has a status, being active, occluded, out,
or new.

5.1 Association Matrix

At frame k, if we have N1 cells {Ci} in the cur-
rent frame and N2 cells {Lj} in the list, we define an
N1 × (N2 + 2) association matrix A. Each entry of A
represents the confidence of associating Ci with a cell
in the list or considering it as a new cell.

If 1 ≤ j ≤ N2 and the status of Lj is active, new or
occluded, we define

Ai,j = PT1
(v(Ci, Lj)). (18)

Let d0 denote the maximum possible speed of a T.
pyriformis cell in pixels per frame, and db(Ci) denote
the distance from Ci to the image border. A new cell or
a re-appearing cell must (re-)enter the image from the
image border. Thus for 1 ≤ j ≤ N2, if the status of Lj
is out and db(Ci) > d0, we set Ai,j = −1; if the status
of Lj is out and db(Ci) ≤ d0, we define

Ai,j = α1PT2
(v′(Ci, Lj)), (19)

where 0 < α1 < 1 is a constant denoting the diffi-
dence (as shown in Table 1) of associating cells in non-
neighboring frames.

1845

Ai,N2+1 is the confidence of considering Ci as a
new cell that has not appeared in previous frames. If
db(Ci) > d0, we set Ai,N2+1 = −1; if db(Ci) ≤ d0,
we define

Ai,N2+1 = α2 exp(−λ1d2b(Ci)), (20)

where 0 < α2 < 1 and λ1 > 0 are two constants.
To also include the case when one cell is occluded

by another, we use Ai,N2+2 to represent the confidence
that Ci is a region of more than one cell overlapping.
Let {L′j} be a subset of the list containing only cells
that have appeared in the (k − 1)th frame. We define

Ai,N2+2 = α3

∑
L′j

e−λ2d
2
p(Ci,L

′
j)−α3

∑
Cj

e−λ2d
2
c(Ci,Cj),

(21)
where 0 < α3 < 1 and λ2 > 0 are two constants,
dc(Ci, Cj) is the center distance between Ci and Cj ,
and dp(Ci, L′j) is the distance from the center of Ci to
the predicted center of L′j , which is similar to (9). The
right-hand side of (21) can be thought of as the pre-
dicted number of cells minus the observed number of
cells near Ci.

5.2 Association List

Once the association matrix A is created, we need
to associate each Ci (or each row of A) with a column
of A. This problem is similar to the standard assign-
ment problem [3], but note that: first, A is generally
not a square matrix; second, more than one Ci can be
considered as new or being a region of occluded cells.
We define an association list ζ = (ζ1, ζ2, . . . , ζN1

) such
that ζi = j if Ci is associated with the jth column of A.
Then our problem is to find

ζ∗ = argmax
ζ

N1∑
i=1

Ai,ζi (22)

such that for any 1 ≤ j ≤ N2, there is at most one i that
satisfies ζi = j.

5.3 The Modified Hungarian Algorithm

When N1 and N2 are both small, the derivative as-
signment problem (22) can be solved using a brute-
force search. But when N1 and N2 are large, the com-
putational complexity of brute-force search is at least

O

(
(max{N1, N2})!
|N1 −N2|!

)
, (23)

which is unacceptable for real-time tracking. We pro-
pose a modified version of the Hungarian algorithm [3]

to obtain a suboptimal solution of (22). The computa-
tional complexity of the original Hungarian algorithm is
O((max{N1, N2})3), and our modified Hungarian al-
gorithm can achieve a computational complexity of at
most O((max{N1, N2})3 ·min{N1, N2}). The modi-
fied Hungarian algorithm is given below:

1. For any 1 ≤ i ≤ N1, if the ith row of A satisfies

argmax
j

Ai,j = j∗ > N2, (24)

then we associate the ith row with the j∗th column,
and delete the ith row from A to obtain a N ′1 ×
(N2 + 2) submatrix A′.

2. Perform the standard Hungarian algorithm on the
first N2 columns of A′ to get an association list ζ.

3. For 1 ≤ i ≤ N ′1, compute this value:

Ω(A′, i) = max{A′i,N2+1, A
′
i,N2+2} −A′i,ζi .

(25)
If max

i
Ω(A′, i) > 0, let

i∗ = argmax
i

Ω(A′, i). (26)

Then we associate the i∗th row of A′ with the
(N2 + 1)th column if A′i∗,N2+1 > A′i∗,N2+2 or the
(N2 + 2)th column if otherwise. Now we delete
the i∗th row from A′, update N ′1, and repeat steps
2 to 3.

4. If max
i

Ω(A′, i) ≤ 0, then the current ζ is the final

association result for the current A′.

5.4 Updating the List of Cells

We update the list of cells {Lj} according to the as-
sociation result of each Ci:

• If Ci is associated with a cell Lj in the list (1 ≤
ζi ≤ N2), we update the status of Lj to active and
replace all its features with the features of Ci.

• If Ci is considered to be a new cell (ζi = N2 + 1),
we simply add it to the list and set its status to new.

• If Ci is considered to be a region of overlapping
cells (ζi = N2 + 2), we search its neighbourhood
within the radius d0 for unassociatedLj’s that have
appeared in the (k − 1)th frame. Then we set the
status of these Lj’s to occluded, and update only
their center positions to the center position of Ci.

• For any Lj that appeared in the (k − 1)th frame
and is still unassociated after all the above steps: if
it is within the distance d0 from the image border,
we set its status to out; otherwise, we associate it
with the closest unassociated Ci.

1846

(a) (b) (c)

Figure 3: Resulting cell trajectories of our method on testing videos. (a) Cells getting very close. (b) Two cells
occluding each other (red vs. blue, and red vs. black). (c) Many cells appearing in the frame at the same time.

Depth of Tree Error Rate of T1 Error Rate of T2
5 1.48% 14.02%
6 1.46% 13.91%
7 1.69% 12.95%
8 1.37% 12.49%
9 1.54% 13.07%

10 1.55% 13.61%

Table 1: Performance of decision trees.

6 Experiments

To build the training set, we manually label the
cell regions segmented in 1000 frames from 2 videos,
where each frame is an 8-bit gray-level image of size
640 × 512, and the videos were captured at 8 frames
per second [2]. The typical size of a T. pyriformis cell
is between 150 and 400 pixels, and the typical speed is
between 5 and 40 pixels per frame. To evaluate the per-
formance of the decision trees T1 and T2, we repeat 20
independent experiments for different depth of the trees,
and in each experiment we use randomly selected 70%
of the cell pairs as the training data, and the rest 30% as
the test data. The number of subdivisions of each fea-
ture is set to 1000, and the stop-splitting size of D̃ is set
to 20. The classifier f is configured such that f(v) = 1
if PT (v) > 0.5. The resulting average rates of misclas-
sification are shown in Table 1, and all 23 entries of the
feature difference vector v turn out to be useful.

In our tracking experiments, we use decision trees
of depth 8. The parameters α1, α2, α3, λ1, λ2 and
d0 are selected empirically by studying the training
videos, and the tracking results are not sensitive to mi-
nor changes of these parameters. Example cell trajecto-
ries obtained by our method are shown in Figure 3. In
these examples we set α1 = 0.1, α2 = 0.1, α3 = 0.8,
λ1 = 0.00008, λ2 = 0.00005 and d0 = 70.

7 Discussion and Future Work

This paper has shown a novel cell tracking method
using decision trees as classifiers for feature difference
vectors. The misclassification rates of our decision trees
are very low, and the tracking results of our method
are robust against cell occlusions. Future work includes
evaluating this method on more complicated videos in
which more cells exist in the frame and occlusions of
many cells can happen. Finally we will integrate our al-
gorithm into the real-time T. pyriformis control system.

References

[1] A. Gersho. Asymptotically optimal block quantization.
IEEE Transactions on Information Theory, 25(4):373–
380, 1979.

[2] D. H. Kim, U. K. Cheang, L. Kohidai, D. Byun, and M. J.
Kim. Artificial magnetotactic motion control of Tetrahy-
mena pyriformis using ferromagnetic nanoparticles: A
tool for fabrication of microbiorobots. Applied Physics
Letters, 97(17):173702, 2010.

[3] H. W. Kuhn. The Hungarian method for the assignment
problem. Naval Research Logistic Quarterly, 2:83–97,
1955.

[4] E. Meijering, O. Dzyubachyk, I. Smal, and W. A. van
Cappellen. Tracking in cell and developmental biology.
Seminars in Cell & Developmental Biology, 20(8):894–
902, 2009.

[5] Y. Ou, D. H. Kim, P. Kim, M. J. Kim, and A. A.
Julius. Motion Control of Tetrahymena Pyriformis Cells
with Artificial Magnetotaxis: Model Predictive Control
(MPC) Approach. In IEEE International Conference on
Robotics and Automation, St. Paul, USA, May 2012.

[6] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman, and A. Blake. Real-time
human pose recognition in parts from single depth im-
ages. In Computer Vision and Pattern Recognition, June
2011.

1847

