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Review on Image Features 

• How do we represent an image by a fixed-length 
feature vector? 
▫ Hand-designed features 
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These features can be 
extracted without looking 

at the entire dataset 
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Learn statistics/patterns 
from the entire dataset 



Other Possibilities? 

• We already have: 
▫ Hand-designed features 

▫ Feature learning from raw pixels 

▫ Feature learning from hand-designed features 
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Other Possibilities? 

• We already have: 
▫ Hand-designed features 

▫ Feature learning from raw pixels 

▫ Feature learning from hand-designed features 

 

• Now we propose a new group of features: 
▫ Feature learning from semantics-sensitive image 

distances 
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Basic Idea 

1. Given a set of images, measure pair-wise 
semantics-sensitive image distances 
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Basic Idea 

2. Apply Multidimensional Scaling (MDS) on 
these distances, and encode all images in a low 
dimensional (m-d) Euclidean space 

13 



Basic Idea 

2. Apply Multidimensional Scaling (MDS) on 
these distances, and encode all images in a low 
dimensional (m-d) Euclidean space 

x 

y 

O 

1.3 
1.2 

0.5 

14 



Basic Idea 

3. We use the low dimensional representation of 
an image as its features, and call it MDS codes 

15 



Basic Idea 

3. We use the low dimensional representation of 
an image as its features, and call it MDS codes 

4. For an image classification application, MDS 
codes of training images are used to train 
classifiers 

16 



Basic Idea 
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Basic Idea 

5. Given a new testing image, measure the 
distances from this image to training images to 
encode it, then apply trained classifiers 

trained MDS  
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Contributions of Our Work 

1. Proposing the MDS feature learning scheme 
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Contributions of Our Work 

1. Proposing the MDS feature learning scheme 

 

2. The iterated Levenberg-Marquardt algorithm 
for efficient encoding 

 

3. Exploring MDS with different image distances: 
▫ IMage Euclidean Distance (IMED) [38] 

▫ Spatial Pyramid Matching (SPM) distance [24] 

▫ Integrated Region Matching (IRM) distance [48] 
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• Representation error: 
 

 

• Raw stress (total cost to be minimized) [26]:  
 

 

28 



MDS Model Training: Concepts 

• Problem:  

 

 

     where 

• Existing methods:  
▫ Iterative majorization algorithm (SMACOF) [30] 

▫ Variants of SMACOF [40]-[43] 

• Our solution:  
▫ Iterated Levenberg-Marquardt algorithm (ILMA) 
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▫ Iterative majorization algorithm (SMACOF) [30] 
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The classical 
MDS problem 
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MDS Model Training: Algorithm 

• Basic idea of ILMA: 
▫ Each time fix all xi’s except for one, and apply the 

standard Levenberg-Marquardt algorithm [33][34] 
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MDS Model Training: Algorithm 

• Please see our paper for algorithm details 

• ILMA runs faster and converges to smaller raw 
stress than many other solutions 
▫ Tested on the well-known Swiss roll flattening 

experiment [39][40] 

Running time comparison with other solutions Swiss roll flattening results 
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This red curve 
is our method. 



New Image Encoding 

• After MDS model training, we need to be able to 
encode a new image Ĩ to    : 
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New Image Encoding 

• After MDS model training, we need to be able to 
encode a new image Ĩ to    : 

 

 

• This can be solved by the standard Levenberg-
Marquardt algorithm [33][34] 

new image 

trained MDS  
model 

trained classifiers 

class 
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Semantics-Sensitive Image Distances 

• We have talked about: 
▫ Feature learning 

▫ MDS model training 

▫ Encoding new image 

• One thing left – what are we talking about when 
we say “distance”? 
▫ A metric on set Ω=(I1,I2,…,IN) in the strict sense? 
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Semantics-Sensitive Image Distances 

• We have talked about: 
▫ Feature learning 

▫ MDS model training 

▫ Encoding new image 

• One thing left – what are we talking about when 
we say “distance”? 
▫ A metric on set Ω=(I1,I2,…,IN) in the strict sense? 
 No, subadditivity triangle inequality does not 

necessarily hold.  

 

 

▫ Just a dissimilarity measurement!  
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Semantics-Sensitive Image Distances 

• IMage Euclidean Distance (IMED) [38] 

▫ Traditional pixel-wise Euclidean distance on a smoothed version 
of two images 

▫ Low level, not much semantics information 

• Spatial pyramid matching (SPM) distance [24] 

▫ Based on pyramid matching kernel [25] 

▫ Well applied to image classification 

▫ Highly semantics-sensitive 

• Integrated region matching (IRM) distance [48] 

▫ Well applied to content-based image retrieval (CBIR) 

▫ Highly semantics-sensitive 

 

• We will skip the descriptions of these image distances  

• Please refer to original work [38][24][48]  
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Experiment 1: Car Recognition 

• Data: UIUC car dataset [44]  
▫ (550 car, 500 non-car) 

 

 

 

• Task: 2-way (binary) classification on fixed-
length feature vectors 

 

• Classifier: RBF kernel SVM [46][47] 

 

• Validation: 5-fold cross validation 
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Experiment 1: Car Recognition 

• Methods employed: 
1. PCA/kernel PCA on raw intensities 

2. MDS on IMage Euclidean Distances (IMED-
MDS) 

3. MDS on Spatial Pyramid Matching distances 
(SPM-MDS) 

4. PCA on spatial pyramid vectors 
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Make this comparison to see  
if MDS brings new information  

beyond pyramid kernels  
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2. MDS on IMage Euclidean Distances (IMED-
MDS) 

3. MDS on Spatial Pyramid Matching distances 
(SPM-MDS) 
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Experiment 1: Car Recognition 

• SPM-MDS outperforms all 
other methods  

 

• SPM-MDS wins pyramid 
PCA, thus MDS encodes 
semantics beyond pyramid 
kernels 

 

• IMED-MDS wins PCA / 
kernel PCA 

 

• (Note: SPM1-MDS and 
SPM2-MDS use different 
scaling functions)  

feature dimension 

a
c

c
u

r
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c
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Experiment 1: Car Recognition 

• 2-d feature scattering plot 
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Experiment 1: Car Recognition 

• 2-d feature scattering plot 
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Best class  
border 



Experiment 2: Multi-Class Object Recognition  

• Data: 12 categories from 
COREL dataset [48][50] 
 

• Task: 12-way 
classification on fixed-
length feature vectors 
 

• Classifier: RBF kernel 
SVM [46][47] 
 

• Validation: 5-fold cross 
validation 
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Experiment 2: Multi-Class Object Recognition  

• Methods employed: 
1. PCA on color+HOG+LBP [5][6] 

2. Bag-of-visual-words (BOV) [19]-[21]  
on color+HOG+LBP 

3. MDS on SPM distances (SPM-MDS) 

4. MDS on IRM distances (IRM-MDS) 

5. Combined features 
 E.g. 12-d PCA + 12-d BOV = 24-d combined 

 

• For method details, see our paper and 
references 
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Experiment 2: Multi-Class Object Recognition  
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Winner is  
SPM-MDS+BOV 



Experiment 2: Multi-Class Object Recognition  

• Conclusions: 
▫ Without combining, PCA and bag-of-visual-

words on color+HOG+LBP outperform MDS 
features 
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Experiment 2: Multi-Class Object Recognition  

• Conclusions: 
▫ Without combining, PCA and bag-of-visual-

words on color+HOG+LBP outperform MDS 
features 

 

▫ SPM-MDS combined with bag-of-visual-words 
significantly outperforms all other methods 

 

▫ We conclude: SPM-MDS features capture 
semantics information from images that are not 
captured by other methods, such as PCA or bag-
of-visual-words 
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Experiment 2: Multi-Class Object Recognition  

• Classification confusion 
matrix of  
SPM-MDS + BOV  

 

• SPM-MDS running time: 
▫ Training MDS model on 

960 images takes 20 min 

▫ Encoding one new 
image takes 0.3 s 
(including feature 
extraction)  
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Final Discussions 

• We proposed a new feature learning scheme: 
▫ Feature learning from semantics-sensitive image 

distances 
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Final Discussions 

• We proposed a new feature learning scheme: 
▫ Feature learning from semantics-sensitive image 

distances 

 

• It works well for object recognition tasks: 
▫ MDS on IMED, SPM distances, IRM distances 

▫ Experiments with UIUC car data, COREL images 

 

• We also introduced an efficient MDS algorithm: 

▫ Iterated Levenberg-Marquardt algorithm (ILMA) 

▫ Code can be downloaded at:  
https://sites.google.com/site/mdsfeature/  

 

61 

https://sites.google.com/site/mdsfeature/


Final Discussions 

• There is more to do: 
▫ MDS model training on large dataset is still slow. 

Can we make it parallel? (on multi-core, GPU, …) 

▫ Are there other semantics-sensitive image 
distances that can be employed? 

▫ Other applications apart from object recognition? 
 Style classification 

 Affective image classification 

 Aesthetics analysis 

 Emotion/sentiment detection 

 Face beautification rating 

 …… 
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All depends on  
how you can define 

 a distance! 



Thank you for your interest! 
  

Welcome to our project wiki site: 
   

https://sites.google.com/site/mdsfeature/  

https://sites.google.com/site/mdsfeature/
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