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Abstract—In this paper, we present a simple and efficient
way to add supervised information into Fisher vectors, which
has become a popular image representation method for image
classification and retrieval purposes in recent years. The basic
idea of our approach is to improve the Fisher kernel in the
training process by adding a discriminative label comparison
matrix to it. The resulting new representations, which we call
Label Consistent Fisher Vectors (LCFV), can be solved for both
overdetermined and underdetermined cases. We show that LCFV
has better classification performance than traditional Fisher
vectors on three public datasets.

Keywords—supervised information; Fisher kernel; image clas-
sification; feature aggregation

I. INTRODUCTION

Image classification has always been one of the key prob-
lems in computer vision, and has many applications such as
scene recognition [1], digit recognition, content-based image
retrieval [2] and even style categorization [3]. A common
practice to represent an image is to extract low-level features
such as SIFT [4] descriptors of local patches, and build
statistical models to aggregate these low-level features.

A widely adopted model is the bag-of-words (BoW) model,
where a “visual vocabulary” is learned by clustering a large
set of local features with k-means, and an image is repre-
sented with a histogram by simply counting the occurrence or
frequency of each “visual word”. The optionally normalized
histogram of an image will work as higher-level features for
classification tasks.

In recent years, the Fisher vector method [5], [6], [7] has
been proposed as an alternative of the bag-of-words model.
This method is based on the work of the Fisher kernel [8],
which models the generative process of a signal. The basic idea
of the Fisher vector is to represent a signal by the whitened
gradient of its probability density function (PDF) with respect
to the parameters of the PDF. Usually, people use Gaussian
mixture models (GMM) as the probability distribution for
Fisher vectors. As stated by the authors of [9], while the
bag-of-words method encodes only the 0-order statistics of
the distribution, the Fisher vector method extends BoW by
encoding up to second order statistics. The Fisher vector model
has been applied to lots of image classification problems, such
as large scale image classification [6] and retrieval [10], [11],
scene classification [12], aesthetic quality assessment [13], and
photographic style categorization [3].

There are a number of ways to add supervised information
into the Fisher vector representation. The simplest way is
to learn the GMM in a supervised manner. In such a case,
however, the learned GMM is task-specific. Thus we need
to learn a different GMM for each set of categories [5],
which is computationally expensive. Another method is the
Fisher kernel learning (FKL) [14], which trains the model to
induce similar gradients for signals with the same class label,
and “maximizes the expected number of correctly classified
objects by a 1-nearest neighbor classifier”. Our method, the
Label Consistent Fisher Vector (LCFV), is a novel approach
in which we improve the Fisher kernel in the training process
by adding a discriminative label comparison matrix to it,
and solve for a transformation matrix which projects the
gradients to approximate the improved kernel. This approach
is straightforward, easy to implement, and computationally
efficient.

The rest of this paper is organized in the following way:
Section II briefly reviews the Fisher kernel and the Fisher
vector method that were introduced in previous literature;
Section III presents our label consistent Fisher vector method;
Section IV presents the experimental results on three public
datasets; and finally Section V is the conclusions.

II. FISHER KERNELS AND FISHER VECTORS

In this section, we review the basic concepts and notations
of Fisher kernels and Fisher vectors. For one image, let
X = {xt}Tt=1 be the set of T local descriptors. The generative
process of X follows the probability density function pθ(X)
where θ is the set of parameters. The contribution of the
parameters to the generative process can be described by the
gradient of the log-likelihood:

gθ(X) =
1

T
∇θ log pθ(X)

=
1

T

T∑
t=1

∇θ log pθ(xt). (1)

Let the Fisher information matrix of pθ(X) be

Fθ = EX [gθ(X)gθ(X)
T], (2)

then the Fisher kernel [8] on two images X1 and X2 is defined
as

K(X1, X2) = gθ(X1)
TF−1

θ gθ(X2). (3)

Since the Fisher information matrix Fθ is symmetric and
positive definite, we can find the Cholesky decomposition of its
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inverse F−1
θ = LTθLθ, in which Lθ is an upper triangular ma-

trix. The Fisher vector of X is defined as Gθ(X) = Lθgθ(X),
and the kernel can be rewritten as

K(X1, X2) = Gθ(X1)TGθ(X2). (4)

Since in Eq. (4) the kernel is simply the dot-product of two
Fisher vectors, a linear classifier on the Fisher vectors will be
equivalent to a kernel classifier on the Fisher kernel [6].

Now assume pθ(xt) is a Gaussian mixture model of K

components pθ(xt) =
K∑
i=1

wipθi(xt), where θi = {μi,Σi},
μi is the mean vector, and Σi is the covariance matrix. To
simplify, Σi is assumed to be diagonal and can be denoted as
the variance vector σ2i . Let γt(i) be the soft assignment of xt
to the ith component [9]:

γt(i) =
wipθi(xt)

K∑
j=1

wjpθj (xt)

, (5)

then the gradient gθ(X) can be mathematically derived:

gμi
(X) =

1

T

T∑
t=1

γt(i)

(
xt − μi
σ2i

)
, (6)

gσi(X) =
1

T

T∑
t=1

γt(i)

(
(xt − μi)

2

σ3i
− 1

σi

)
. (7)

If the mean vector μi and the variance vector σi are both
D-dimensional, then the gradient vector gθ(X) or the Fisher
vector Gθ(X) is 2KD-dimensional.

III. LABEL CONSISTENT FISHER VECTORS (LCFV)

The entire process of computing the Fisher vectors in
Section II is unsupervised and makes no use of class labels
of the training images. Now we consider a training set of N
images {Xi}Ni=1, and ci is the class label of image Xi. In the
Fisher kernel, a large value of K(Xi, Xj) means that images
Xi and Xj are similar, while a small value means dissimilar. If
we add supervised information to the kernel, we are expected
to make it better. Thus we define

K̃(Xi, Xj) = K(Xi, Xj) + αCi,j , (8)

where α > 0, Ci,j takes value 1 when ci = cj , and takes value
0 otherwise.

A. Problem Formulation

Assume there are N images, and each Fisher vector is M -
dimensional. Let G = [Gθ(X1), . . . ,Gθ(XN )] be the M ×N
matrix of the Fisher vectors of all training images, C = [Ci,j ]
be the label comparison matrix, and K be the Fisher kernel
matrix. For basic image classification tasks, the class labels
ci’s are mutually exclusive, thus according to Theorem A.1
in Appendix A, C is positive semi-definite. The resulting

new kernel K̃ = K + αC is supposed to capture better
similarity/dissimilarity information, and it is a valid kernel
by Mercer’s theorem since both K and C are positive semi-
definite. Now we seek to find a transformation matrixM, such
that (MG)T(MG) approximates matrix K̃:

(MG)T(MG) = GTG+ αC. (9)

Apart from Eq. (9), we also wish the matrixM to approximate
the identity matrix I because we want to preserve the good
properties of Fisher vectors G. We can solve for the matrix
M on the training set with label information in C. When a
new image without class label comes, we first compute its
Fisher vector G, then its LCFV representation is MG. LCFV
is expected to be a more discriminative representation than
traditional Fisher vectors.

In the rest of this section, we discuss two solutions to
the problem Eq. (9), and we name them LCVF1 and LCFV2
respectively.

B. LCFV1

Let M be an M ×M matrix and W =MTM = I+B.
Instead of solving for M, we solve for W first. Now Eq. (9)
becomes:

GTBG = αC. (10)

1) Overdetermined cases: Since the matrix G is M ×N ,
if N ≥ M , Eq. (10) is an overdetermined system and does not
necessarily have an exact solution. Thus we seek to minimize
the Frobenius norm of the error:

min
B

||GTBG− αC||F . (11)

This can be simply solved by pseudo-inverse:

B = α(GGT)
−1

GCGT(GGT)
−1

. (12)

2) Underdetermined cases: If N < M , Eq. (10) is an
underdetermined system, and the solution is not unique. Thus
we need to add extra constraints. Since we wish M to
approximate I, we also want B to be close to the zero matrix.
Now based on Eq. (10), we can minimize the Frobenius norm
of the M ×M matrix B:

min
B

||B||F
s.t. GTBG = αC. (13)

Let the singular value decomposition (SVD) of matrix G
be G = USVT. Eq. (10) becomes STUTBUS = αVTCV.
The matrix S is M × N and is a non-square diagonal

matrix. Let S =

[
S1
0

]
where S1 is the N × N submatrix,

and UTBU =

[
Z1 Z2
Z3 Z4

]
. Thus we only need to ensure

Z1 = αS−1
1 VTCVS

−1
1 , and Z2, Z3, Z4 can be any matrices.

Since Frobenius norm is invariant under a unitary transform,
we have

||B||2F =||UTBU||2F
=||Z1||2F + ||Z2||2F + ||Z3||2F + ||Z4||2F . (14)

Thus the solution to problem Eq. (13) is Z2 = Z3 = Z4 = 0,
and

B = U

[
αS−1

1 VTCVS
−1
1 0

0 0

]
UT. (15)

An interesting observation is that, since the rank of a matrix
is also invariant under unitary transforms, we know rank(B) =
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rank(UTBU), thus Eq. (15) is also one solution to the rank
minimization problem:

min
B

rank(B)

s.t. GTBG = αC. (16)

3) Solving for M: Once we have determined the matrix
B, we get W = I+B. Since the matrix C is symmetric, W
is also symmetric. Let the eigenvalue decomposition of W
be W = QwΛwQ

T
w where Qw is a unitary matrix, then we

simply have M = PΛ1/2w QT
w where P is an arbitrary unitary

matrix. Since we want M to approximate I, we can minimize
the Frobenius norm of the difference:

min
P

||PΛ1/2w QT
w − I||F

s.t. P is a unitary matrix. (17)

Since Frobenius norm is invariant under unitary transforms,
we know

||PΛ1/2w QT
w − I||F = ||Λ1/2w −PTQw||F . (18)

According to Theorem A.2 in Appendix A, it can be shown
that the solution to Eq. (17) is P = Qw. Thus our final solution

is M = QwΛ
1/2
w QT

w.

C. LCFV2

Another way of solving Eq. (9) is to directly work on
M rather than W. Although C is not necessarily positive
definite and may have no Cholesky decomposition, as long as
the class labels are mutually exclusive, C is positive semi-
definite (Theorem A.1). Let the eigenvalue decomposition
of C be C = QcΛcQ

T
c . Let L be the number of classes,

then rank(Λc) = rank(C) = L. Assume the L non-zero
eigenvalues of Λc are on the first L rows of Λc, and let A

be the first L rows of Λ
1/2
c QT

c . Then the L × N matrix A
satisfies C = ATA.

Now Eq. (9) can be rewritten as:

(MG)T(MG) =GTG+ αATA

=
[
GT

√
αAT

] [ G√
αA

]
. (19)

This can be simplified to MG =

[
G√
αA

]
. If we assume

M =

[
I
E

]
where E is an L×M matrix, we just need:

EG =
√
αA. (20)

1) Overdetemined cases: Similar to LCFV1, if N > M ,
Eq. (20) is an overdetermined system, and we seek to minimize
the Frobenius norm of the error:

min
E

||√αA−EG||F . (21)

The solution to (21) is simply:

E =
√
αAGT(GGT)

−1
. (22)

2) Underdetermined cases: If N < M , Eq. (20) is an
underdetermined system, and the solution is not unique. Simi-
lar to LCFV1, we can minimize the Frobenius norm of matrix
E:

min
E

||E||F
s.t. EG =

√
αA. (23)

Again, let the singular value decomposition of matrix G be

G = USVT and S =

[
S1
0

]
where S1 is the N × N

submatrix, then the solution to Eq. (23) is:

E =
[ √

αAVS−1
1 0

]
UT. (24)

Note that if we replace the Frobenius norm ||E||F in Eq. (23)
by rank(E), Eq. (24) is still a solution.

D. Further Discussion

For the underdetermined cases of both LCFV1 and LCFV2,
we need to compute the singular value decomposition of matrix
G. For numerical stability, it is a good practice to discard the
columns of matrix S and V that correspond to very small
singular values (e.g. smaller than 0.01) of G.

One big difference between LCFV1 and LCFV2 is that the
transformation matrix M of LCFV2 is not a square matrix. It
adds L additional dimensions to the feature space, thus LCFV2
may seem a little “hacking” compared with LCFV1. As will be
shown in Section IV, LCFV2 usually brings more performance
improvement than LCFV1, which can also be expected.

IV. EXPERIMENTS

In this paper, we focus on the comparison between original
Fisher vectors and our LCFV method, thus we simplify the
experiments instead of targeting at the state-of-the-art perfor-
mance. We evaluate both Fisher vectors and LCFV on three
well-known datasets: the fifteen scene categories dataset [15],
the Graz-02 dataset [16], and a subset of the Corel Photo
Gallery [2]. On each dataset, we take a number of images
from each category to form a training set, and use a similar
collection as the testing set. First, we extract SIFT features for
each image, reduce the dimension of the SIFT features using
PCA, learn a Gaussian mixture model on the low dimensional
features, and represent each image with a Fisher vector. Then
using the training set, we compute the label comparison
matrix C and run the LCFV algorithm (using LCFV1 and
LCFV2 respectively) to learn the transformation matrix M,
and train a linear SVM on the LCFV. In the testing stage, we
use the learned matrix M to compute the LCFV for testing
images, and use the learned SVM to classify these images. The
classification accuracy values using traditional Fisher vectors,
LCFV1 and LCFV2 are recorded. This experiment pipeline is
repeated using different PCA dimensions, different number of
Gaussian mixture components, different values of α (in a log
scale), and different training-testing partitions of the dataset
(we run 10 random partitions for each configuration).

For simplicity, when we compute Fisher vectors in our
experiments, we only use the gradient with respect to the mean
vectors of the GMM, without using the gradient with respect
to the variance vectors. Thus the Fisher vector dimension M
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is simply equal to the PCA dimension times the number of
Gaussian mixture components.

Again, we emphasize that these experiments are simplified
to compare LCFV with traditional Fisher vector method. There
are many ways to improve the experiments to achieve state-
of-the-art classification performance, including: using more
features such as HOG [17] and LBP [18]; computing LCFV
on a spatial pyramid instead of on the entire image; using the
gradient with respect to the variance vectors when computing
Fisher vectors.

A. Fifteen Scene Categories Dataset

The fifteen scene categories dataset [15] has 200 to 400
gray images for each category, and the average size of an image
is 300 × 250 pixels. For training, we take 100 images from
each category, thus N = 1500 in this case. In Fig. 1, we show
the classification accuracy of FV, LCFV1 and LCFV2 using
different PCA dimensions and different number of Gaussian
mixture components. In each plot, we show the classification
accuracy of LCFV1 and LCFV2 using different values of α
in a log scale. We can observe that when α is very small,
there is almost no difference between LCFV and traditional
Fisher vectors; when α is too large, lots of information in the
traditional Fisher vectors is lost, and the performance drops.
Only when α lies in a reasonable range, the performance of
LCFV will be better than traditional Fisher vectors.

One way to find a good value of α is to perform cross
validation on the training set, and select the best α according
to the cross validation. For example, we can further divide
the training set into five subsets, and perform a five-fold cross
validation. We find the best α for each fold, and take their
mean value as the final α to apply to testing. Following this
parameter tuning practice, we report the average classification
accuracy on 10 independent runs using random training-testing
partitions of the dataset in Table I. This practice is also used
for experiments on other datasets in this paper.

From Table I, we can see that the classification perfor-
mance of LCFV is better than traditional Fisher vectors. This
improvement benefits from the supervised information that
we have integrated into the training process of the Fisher
vectors. Such benefits are computationally inexpensive: on
a Mac machine with 2.4GHz Quad-Core Intel Xeon CPU,
when PCA dimension is 16 and the number of Gaussian
mixture components is 16 (overdetermined), the computation
of M takes about 0.1 second using LCFV1 and 1 second
using LCFV2; when PCA dimension is 64 and the number
of Gaussian mixture components is 64 (underdetermined), the
computation of M takes about 6 seconds using LCFV1 and 4
seconds using LCFV2.

B. Graz-02 Dataset

The Graz-02 dataset [16] has four categories: bike, person,
car and a negative category. Each category has 300 to 500
color images, and the typical image size is 640× 480 pixels.
Classification on this dataset is more difficult due to its high
intra-class variation. We take 100 images from each category
for training (N = 400) and 200 images from each category
for testing. Classification results are shown in Fig. 2 and Table
II. We can see that LCFV again has better performance than
traditional Fisher vectors.
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Fig. 1: Evaluation results on the fifteen scene categories
dataset using different values of α. (OD: overdetermined, UD:
underdetermined)

TABLE I: Average classification accuracy (%) of ten runs with
tuned α on the fifteen scene categories dataset.

PCA dim. # of GMM FV LCFV1 LCFV2
16 16 65.71 66.34 66.90
16 64 70.27 70.46 70.52
16 128 71.76 71.85 71.89
64 16 66.93 67.26 67.37
64 64 72.03 72.40 72.39
64 128 72.86 73.22 73.22
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Fig. 2: Evaluation results on the Graz-02 dataset using different
values of α.

C. Corel Images

The last experiment is an evaluation using a subset of the
Corel Photo Gallery [2]. We take twelve categories from the
Corel dataset, where each category has 100 color images, and
the typical size of an image is 120× 80 pixels. These twelve
categories are selected such that they are distinguishable by a
human but do not have trivial clues such as pure background
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TABLE II: Average classification accuracy (%) of ten runs
with tuned α on the Graz-02 dataset.

PCA dim. # of GMM FV LCFV1 LCFV2
64 16 62.61 62.96 63.08
64 64 67.11 67.38 67.43
64 128 68.10 68.28 68.43

color. The categories are: castle, bonsai, ship, train, flower,
mushroom, forests, waterfall, butterfly, fish, wolf and woman.
We take 50 images from each category for training (N = 600)
and 50 images from each category for testing. Classification
results are shown in Fig. 3 and Table III. Again, LCFV
performs better than traditional Fisher vectors.
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Fig. 3: Evaluation results on Corel images using different
values of α.

TABLE III: Average classification accuracy (%) of ten runs
with tuned α on Corel images.

PCA dim. # of GMM FV LCFV1 LCFV2
64 16 56.27 56.58 56.70
64 64 60.53 60.77 60.87
64 128 61.68 62.03 62.10

V. CONCLUSIONS

In this paper, we have introduced the label consistent Fisher
vector (LCFV) method, which is a supervised extension of
the traditional Fisher vector method. LCFV is based on pair-
wise label comparison in the training set and solves for a
transformation matrix which is applied on Fisher vectors. Our
method is very straightforward and computationally efficient.
Evaluated on three public datasets, we have shown that LCFV
improves the classification performance of traditional Fisher
vectors. One limitation of our method is that the classification
performance is sensitive to the parameter α. However, the
parameter can be tuned by cross validation on the training
data. Although in this paper we only present experiments on
scene classification and object recognition problems, it is very
promising to apply our method on other problems such as digit
recognition and style categorization as future work.

APPENDIX A
TWO USEFUL THEOREMS

In order to show that the kernel K̃(·, ·) defined in Eq. (8)
is a valid kernel, we use the following theorem:

Theorem A.1. An N×N label comparison matrix C = [Ci,j ]
where Ci,j = δ(ci = cj) is positive semi-definite.

Proof: Since C is a label comparison matrix, we can
re-order the class labels ci such that the same labels are
clustered together. This corresponds to applying a series of
row-switching elementary operation matrices R1, . . . ,Rr on

C to make it a block-wise diagonal matrix C̃:

C = Rr · · ·R1C̃R1 · · ·Rr

= RC̃RT,

(25)

where R = Rr · · ·R1. If there are L classes in total, and the
size of class i is Ni, then C̃ has L blocks, and each block is
an all-ones submatrix. Let 1Ni

= [1, . . . , 1]T denote the Ni×1
all-ones column vector, then we can rewrite C̃ as:

C̃ =

⎡
⎢⎣

1N11
T
N1

. . .

1NL
1TNL

⎤
⎥⎦ . (26)

Now given an arbitrary N ×1 column vector x, let x̂ = RTx,
and we partition x̂ according to the block sizes of C̃:

x̂ =

⎡
⎢⎣

x̂1
...
x̂L

⎤
⎥⎦ . (27)

We have

xTCx = xTRC̃RTx

= x̂TC̃x̂

=

L∑
i=1

x̂Ti 1Ni1
T
Ni

x̂i

=
L∑
i=1

||1TNi
x̂i||22

≥ 0. (28)

Thus C is positive semi-definite.

To find the solution to Eq. (17), we need the following
theorem:

Theorem A.2. Let Λ be an M×M diagonal matrix with diag-
onal entries λ1, λ2 . . . , λM , where λi > 0 for i = 1, 2, . . . ,M .
If U is the M ×M unitary matrix that minimizes ||Λ−U||F ,
then U = I.

Proof: Let ei be the ith column of the M ×M identity
matrix I, ui be the ith column of U, and uij be the jth entry
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of ui. Now we have uTi ui = 1, and

||Λ−U||2F =

M∑
i=1

||λiei − ui||22

=
M∑
i=1

(λie
T
i − uTi )(λiei − ui)

=
M∑
i=1

(λ2i − λie
T
i ui − λiu

T
i ei + uTi ui)

=
M∑
i=1

(λ2i − 2λiuii + 1)

= M +
M∑
i=1

λ2i − 2
M∑
i=1

λiuii.

Since λi > 0, minimizing ||Λ−U||F is equivalent to maxi-
mizing each uii. Since uii ≤ 1, the solution is simply uii = 1
for i = 1, 2, . . . ,M . Because uii = 1 is equivalent with
ui = ei, we have U = I.
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