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Abstract—In traditional vision systems, high level information
is usually inferred from images or videos captured by cameras, or
depth images captured by depth sensors. These images, whether
gray-level, RGB, or depth, have a human-readable 2D structure
which describes the spatial distribution of the scene. In this paper,
we explore the possibility to use distributed color sensors to infer
high level information, such as room occupancy. Unlike a camera,
the output of a color sensor has only a few variables. However, if
the light in the room is color controllable, we can use the outputs
of multiple color sensors under different lighting conditions to
recover the light transport model (LTM) in the room. While the
room occupancy changes, the LTM also changes accordingly, and
we can use machine learning to establish the mapping from LTM
to room occupancy.

Keywords—room occupancy; light transport model; color sen-
sors; controllable light

I. INTRODUCTION

Although surveillance video cameras have widely been
used for automatic monitoring of indoor spaces, one major
concern on this technique is the privacy of human subjects.
Staying in a monitored room simply makes people feel uncom-
fortable. In this work, we seek to infer the room occupancy by
using distributed color sensors, where each color sensor can be
thought of as a single pixel with no spatial information. Once
we are able to determine the room occupancy, we can use
such information to perform intelligent control of the room.
We provide a flowchart to illustrate our system pipeline in
Figure 1.

A. Smart Room Setup

Our testbed is a smart lighting room with one window and
two doors, where color controllable LED light fixtures and
color sensors are installed. The inner space of the smart room
is about 7.12 feet wide, 11.25 feet long, and 7.20 feet high.

Twelve color controllable LED fixtures illuminate the room
from the ceiling (Figure 2b). For each LED fixture, we can
control the intensity of three color channels: red, green and
blue. The input to each channel is scaled to lie in the range
[0, 1]. We also place twelve Seachanger wireless Colorbug
sensors (Figure 2a) on the walls of this room (Figure 2c).
Each color sensor has four output channels: red, green, blue
and white. We use the Robot Raconteur software [1] for
communication. The software connects to color sensors with
Wi-Fi, and sends input signals to LED fixtures via Bluetooth.
This same smart room has been used for a number of other
research projects, including lighting control algorithms [2], [3]
and visual tracking systems [4].

II. LIGHT TRANSPORT MODEL

Since the current configuration of our testbed has twelve
LED fixtures with three channels each, the input to the system
is an m1 = 36 dimensional signal x. Because we have twelve
color sensors, each with four channels, the measurement is
an m2 = 48 dimensional signal y. We have performed
experiments to show that there is an affine relationship between
x and y:

y = Ax + b, (1)

where A ∈ R
m2×m1 and b ∈ R

m2 . The matrix A is called
the light transport matrix, and the vector b is the sensor output
with respect to the ambient light. When we set the input to a
given level x0, the output of the sensors is y0 = Ax0+b. Now
if we add a small perturbation δx to the input, the new output
becomes y0 + δy = A(x0 + δx) + b. By simple subtraction,
we can cancel out b, and get

δy = Aδx, (2)

which is equivalent to the linear light transport model (LTM)
described in [5]. Here we call x0 the base light, which is often
specified by a control algorithm.

If we measure y0 once, and measure y0 + δy many times
with different δx, then we get a linear system to solve for A.
We define the magnitude of δx as ρ = ||δx||∞. The choice of
the magnitude is a trade-off: we need it to be large enough to
be accurately sensed by the color sensors, but small enough to
keep the human subjects feel comforatable. In our experiments,
we set ρ = 0.025.

III. MODEL FOR AN EMPTY ROOM

When the smart room is empty, we assume the light
transport matrix is A0. We perturb the input of the LED
fixtures x0 with randomly generated m1-dimensional sig-
nals δx1, δx2, . . . , δxn, and measure the m2-dimensional
changes of the sensor readings δy1, δy2, . . . , δyn. Let X =
[δx1, δx2, . . . , δxn] and Y = [δy1, δy2, . . . , δyn], where X ∈
R

m1×n and Y ∈ R
m2×n. Now the linear system becomes

Y = A0X . If n ≥ m1, this linear system can be solved by the
pseudo-inverse:

A0 = Y XT(XXT)−1, (3)

which corresponds to the minimization of the Frobenius norm
of the error:

min
A0

||Y −A0X||F . (4)

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.347

1987



window 

LED fixtures 

color  
sensors 

model 
recovery 

X 

Y 
Smart Room 

light transport 
matrix 

classifier 

occupancy 

Computer 

ier

0
0.1
0.2
0.3
0.4
0.5
0.6

Fig. 1: The flowchart of our room occupancy determination system.

(a) (b) (c)

Fig. 2: The smart room setup. (a) The colorbug sensor. (b) Twelve color controllable LED fixtures illuminate the room from the
ceiling. (c) Colorbug sensors are placed on the walls.

Since we are modeling an empty room, this process can be
performed offline as a calibration step, and we can make many
measurements to ensure n ≥ m1.

IV. SPARSE RECOVERY OF LIGHT TRANSPORT CHANGES

Suppose we have determined the light transport matrix A0

for an empty room. Now, if the room occupancy changes,
the light transport matrix A will also change. To recover
the new A, we again randomly perturb LED input with
X = [δx1, δx2, . . . , δxn], and measure the changes of color
sensor outputs Y = [δy1, δy2, . . . , δyn]. We now have the
constraints Y = AX . To ensure real time performance, we
can only take a limited number of measurements within a short
time interval, during which we can assume the occupancy, the
base light x0, and the sensor response b to the ambient light
are all constant. Thus n < m1 and this is an underdetermined
system. To solve for A, we need to add extra constraints. One
intuition is that the changes in the light transport model are
sparse — when the occupancy changes, most light paths are
not affected.

To better understand this philosophy, we need to take an
in-depth look into the light transport matrix A. Each entry of
A can be thought of as a summation of responses from one

sensor channel to one LED channel on all the light paths from
this LED to this sensor. These light paths include the line
segment connecting the LED fixture and the sensor (direct
path), and numerous reflection paths (mostly diffuse reflec-
tion). Apparently, the direct path is the dominating component
(Figure 3a). When a human subject enters the room, he only
blocks a limited number of these direct paths, as illustrated in
Figure 3b. Our sparsity assumption can be understood in this
way: because the room is sparsely occupied, only a few direct
paths will change when the room occupancy changes.

Thus we hope to minimize the difference between A and
A0. Since Y = AX , we have A0X − Y = (A0 − A)X . Let
Z = A0X − Y and E = A0 − A. Z can be interpreted as
the change in sensor responses due to the change in room
occupancy; E can be interpreted as the change in the light
transport model due to the change in room occupancy. The
matrix E is referred to as the light transport changes. Then our
problem becomes Z = EX , where we hope E approximates
the zero matrix, which can be formulated as:

min
E

f(E)

s.t. Z = EX, (5)

where f(·) is a target function describing how deficient or
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Fig. 3: (a) Direct path is the dominating component. (b) Room is sparsely occupied.

sparse the matrix E is. Here we clarify that E is not really
almost zero, because it is the change in the model which should
be noticeable when the occupancy changes. We are just looking
for the E that is closest to zero matrix under the constraint
Z = EX . We have different options for the function f(·):

f1(E) = rank(E), (6)

f2(E) = ||E||F = ||vec(E)||2, (7)

f3(E) = ||vec(E)||0, (8)

f4(E) = ||vec(E)||1. (9)

Here vec(·) denotes the vectorization of a matrix (stacking
the columns into a single column vector). Different choices
of the target function f(·) have different practical meanings,
and correspond to different assumptions. If we minimize the
rank of E, we are assuming that many rows of E are linearly
dependent. In another word, the change in the occupancy
affect the light paths from the sources to different sensors in
a similar way. Minimizing the Frobenius norm of E is not
straightforward, but we will later show that its solution is also
the solution to rank minimization. Minimizing target function
f3(E) or f4(E) will result in a sparse matrix E, where many
entries of E are zeros. A sparse E means that only a limited
number of direct light paths have changed as a result of the
change in the room occupancy.

A. Rank Minimization

The rank minimization problem we propose here is differ-
ent from the matrix completion problem [6], where people seek
to recover a low-rank matrix from a small subset of its entries.
Our constraint is a linear system, not a known subset of entries.
To solve the problem in Eq. (5) with target function (6), let
the singular value decomposition (SVD) of X be X = USV T,
where U ∈ Rm1×m1 , S ∈ Rm1×n, and V ∈ Rn×n. Then the
constraint becomes ZV = EUS. Since n < m1, we can write

S as S =

[
S1

0

]
, where S1 is the n× n diagonal matrix of

the singular values of X . Let EU = F = [ F1 F2 ], where
F1 is m1 × n and F2 is m1 × (m1 − n). Now our constraint
is simply F1S1 = ZV , or F1 = ZV S−11 , and F2 can be an
arbitrary submatrix. Since the rank is invariant under unitary
transforms, we know

rank(E) = rank(EU) = rank(F ) ≥ rank(F1). (10)

Apparently, when F2 = 0, rank(E) = rank(F1), thus our
solution is

E =
[

ZV S−11 0
]

UT. (11)

An interesting observation here is that our solution to the
rank minimization problem is also a solution to the Frobenius
norm minimization problem. This is because the Frobenius
norm is also invariant under unitary transforms:

||E||2F = ||EU ||2F = ||F ||2F = ||F1||2F + ||F2||2F , (12)

and it takes its minimum also when F2 = 0.

We also point out that the rank minimization problem can
also be viewed as a sparse recovery problem, because the rank
of a matrix is simply the number of non-zero singular values
of this matrix [7]. Thus minimizing the rank of a matrix is
equivalent to minimizing the �0 norm of its vector of singular
values.

B. Sparse Recovery

To solve the problem in Eq. (5) with target function (8) or
(9), we can rewrite Z = EX to its Kronecker product form:

vec(Z) = (XT ⊗ Im2×m2
) vec(E). (13)

This is a standard compressed sensing problem, where vec(E)
is the unknown sparse signal of interest, vec(Z) is the vector of
measurements, and the Kronecker product Φ = XT⊗ Im2×m2

is the sensing matrix.

1) Solutions: Minimizing f3(E) is an �0 optimization
problem, which is NP-hard. However, greedy algorithms such
as orthogonal matching pursuit (OMP) [8] can be used to find
the approximate solution efficiently. We use the SparseLab
toolbox [9] to solve the �0 optimization problem. Minimizing
f4(E) is an �1 optimization problem, which can be recast
as a linear programming problem [10]. We solve for the �1
optimization problem using the �1-magic toolbox [11].

2) Theoretical Guarantee of �1 Minimization: By minimiz-
ing f4(E), we wish to find the sparse signal vec(E). However,
�1 minimization can only recover the sparse signals under
certain conditions. The isometry constant [12] of order s of
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a sensing matrix Φ is defined as the smallest number δs such
that

(1− δs)||x||22 ≤ ||Φx||22 ≤ (1 + δs)||x||22 (14)

holds for all s-sparse signals x (an s-sparse signal is a
signal where only s elements are non-zero). According to the
noiseless recovery theorem in [10], if vec(E) is s-sparse and
the isometry constant of order 2s of the sensing matrix Φ is
δ2s, then a sufficient condition for �1 minimization to exactly
recover vec(E) is δ2s <

√
2− 1.

There are existing results on the restricted isometry prop-
erty (RIP) analysis of matrix Kronecker products [13], [14].
One essential conclusion from the previous work is:

max{δs(A), δs(B)} ≤ δs(A⊗B)

= δs(B ⊗A)

≤ (1 + δs(A))(1 + δs(B))− 1, (15)

where A and B are two matrices, and δs(·) is the isometry
constant of order s of a matrix. It can be easily shown that
δs(Im2×m2

) = 0 for all s. Thus from Eq. (15) we get:

max{δs(XT), 0} ≤ δs(Φ) = δs(X
T ⊗ Im2×m2)

≤ (1 + δs(X
T))− 1, (16)

or simply δs(Φ) = δs(X
T).

V. OCCUPANCY DETERMINATION

The light transport matrix A is dependent only on the room
occupancy, and independent of the input to the LED light
fixtures. Thus once we are able to recover the matrix A, we can
infer high level information about the room occupancy from
this matrix. We can either directly use the entries of matrix A
as features, or build statistical models for feature extraction.
Then we can use these features for supervised learning to
discriminate among various occupancy scenarios in the smart
room.

A. Classification Problem Setup

We set up two classification problems. The first one is
a four-category classification problem, where we want to
determine whether the room is empty, occupied by a small
group (one to three) of people, occupied by a large group (four
to seven) of people gathering in the room, or occupied by a
large group of people scattered in the room. In the following
sections such as Figure 5, these categories are referred to
as “empty”, “small”, “LG” (large gathered), and “LS” (large
scattered), respectively.

The second problem, which is much more difficult, is
a fifteen-category classification problem, where we want to
discriminate between single individuals and small groups (two
to three) of people, and also locate which part of the room
they occupy. We manually divide the room into six regions,
named “U”, “V”, “W”, “X”, “Y”, and “Z” (Figure 4). In
the following sections such as Figure 6 and Figure 7, the
categories of a single individual are named as “1+region”,
and the categories of a small group (two to three people) are
named as “S+region”. So the fifteen categories are: empty, six
regions for individual, six regions for small group, large group
gathered, and large group scattered.

window 
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��

��

��

��
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Fig. 4: A diagram of the six regions of the room.

B. Data Collection

We collect data by creating various room occupancy scenar-
ios, randomly generating perturbed inputs to the LED fixtures,
and measure the outputs of the Colorbug sensors. To ensure
this method can run in real time, we limit our number of
measurements to n = 24. Since it takes about 0.4 second for
our system to send inputs to LED fixtures and read outputs
from the Colorbug sensors, the n measurements plus the base
light measurement are made within 10 seconds, during which
we assume the room occupancy scenario does not change.
The occupancy scenarios are created by using nine subjects.
Each time we ask several subjects to enter the room and we
read Colorbug sensors using different inputs to the LEDs. We
record the number and location of the subjects to create the
ground truth labels for the two classification problems. Then
we randomly partition each class, using 60% as training data
and 40% as testing data.

VI. EXPERIMENTAL RESULTS

In this section, we directly use the entries of the matrix E
as our features. Thus our feature dimension is m1m2 = 1728.
These features are then normalized — each entry is subtracted
by its mean and divided by its standard deviation over the
training set. For each of the classification problems that we
have set up, we use radial basis function (RBF) kernel support
vector machine (SVM) as the classifier, and use the mean av-
erage precision (mAP) as our goodness measurement. Because
different categories have different sizes, other performance
measures such as accuracy can be highly biased, especially
when some easiest classes are significantly larger than others.
For each category, we train a one-versus-all SVM, and use the
decision scores to compute the average precision (AP). Then
the mAP is simply the mean value of the average precisions
for all categories.

A. Four-Category Classification

Using rank minimization to recover light transport changes,
we are able to achieve a mAP of 88.62%, compared with the
mAP of random guess being 25.54%. Using �1 minimization,
we achieve a mAP of 81.92%. Using �0 minimization, the
mAP is 71.19%. The average precisions of each category using
different methods are shown in Figure 5.

1990



empty small LG LS
0

10

20

30

40

50

60

70

80

90

100

Category

A
ve

ra
ge

 P
re

ci
si

on

rank min
L0 min
L1 min
chance

Fig. 5: The average precisions (AP) for the four-category
classification problem. The four categories are: empty room,
small group (one to three people), large group (four to seven
people) gathered, and large group scattered.

In Figure 5, the AP of the second category using random
guess is much higher than other categories because this cate-
gory has a much larger size. For the four-category classification
problem, we can see the light transport changes recovered
by rank minimization method produces the best classification
performance. This means that our assumption that the change
in the occupancy affect the light paths from the sources to
different sensors in a similar way is reasonable.

B. Fifteen-Category Classification

For the fifteen-category classification problem, using rank
minimization to recover light transport changes, we are able to
achieve a mAP of 78.69%, compared with the mAP of random
guess being 7.95%. Using �1 minimization the mAP is 68.37%,
while using �0 minimization the mAP is 50.76%. The average
precisions of each category using different methods are shown
in Figure 6.

As expected, the performance of this problem is worse
than only four categories. However, the mAP of classification
results using rank minimization for light transport change
recovery is still satisfactory.

Apart from the mAP evaluation using one-versus-all classi-
fication, we also show the confusion matrix of a 15-way SVM
on the testing data in Figure 7. In the confusion matrix, we
can see that most cases are correctly classified. In a number of
cases, a small group of people is misclassified as a large group
of people gathering. This is partially because of the unbalanced
training data, and partially because of the difficulty for the light
transport model to distinguish the size of a group.

As a comparison, we also investigate whether it is a good
practice to normalize features and use RBF kernel SVM for
this problem. We repeat the experiments using unnormalized
features and linear SVM as classifiers, and report the mAP
in Table I. From the table we can see both feature normal-
ization and using RBF kernel SVM improve the classification
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Fig. 6: The average precisions (AP) for the fifteen-category
classification problem.
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Fig. 7: The confusion matrix of the fifteen-category classi-
fication results using rank minimization recovery for light
transport changes. Rows are ground truth and columns are
predictions.

performance significantly. Feature normalization is important
because different sensors, or even different channels of the
same sensor may have different sensitivity. Using kernel SVM
is important because the classification boudaries in the feature
space are nonlinear.

VII. DISCUSSIONS: LIMITATIONS AND FUTURE
IMPROVEMENTS

During the pre-processing of the data, for each individual
or group of subjects, multiple measurements are made, and
we partition these measurements to training set and testing
set with ratio 6 : 4. All the experimental results reported
in Section VI use such a data partition protocol. This is
good enough for experiments. However, to deploy a practical
system, we want our algorithm to be able to generalize to
new subjects. In such a problem, the subjects in the testing
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TABLE I: The mean average precisions (mAP) of the fifteen-category classification problem using different features, different
classifiers and different light transport change recovery methods.

normalized features, normalized features, unnormalized features, unnormalized features,
mAP (%) RBF kernel SVM linear SVM RBF kernel SVM linear SVM

rank minimization 78.69 66.07 67.96 61.27
�0 minimization 50.76 40.63 34.20 29.34
�1 minimization 68.37 53.44 55.27 47.52

set should never appear in the training set. We also carried
out this experiment for fifteen-category classification, and find
out that the mAP performance drops dramatically to 22.09%,
21.73% and 16.33% for rank minimization, �1 minimization,
and �0 minimization, respectively. This is because our dataset
is relatively small, obtained with only nine subjects. The
light transport model describes the colors in the space. Since
different subjects wear clothes of different colors, a subject
generalization task with such a small number of subjects
should expect failure. Thus, to implement a practical system
in the future, we need to perform the training using a very
large dataset, covering all possible clothes colors.

We are using Seachanger Colorbug sensors in our exper-
iments. We point out that these are just the sensors we use
for current experiments. These sensors are expensive, have
a long response delay, need to be charged every six hours,
and receive light from all directions, thus are not suitable
for practical systems (some functionalities also overfit our
problem). However, it is not difficult to build lightweight color
sensors with low cost, quick response and robust performance
(e.g. using photodiodes). Once we can directly integrate such
sensors into the lighting system, it is possible to achieve real
time occupancy determination and intelligent control of the
room.

VIII. CONCLUSIONS

In this paper, we presented a room occupancy determina-
tion system using color controllable LED fixtures and color
sensors. Based on the inputs to the LEDs and the measure-
ments from the sensors, we recovered the light transport model,
and used the model parameters to determine the occupancy in
this smart room. The challenge of this problem is that we
can only take a limited number of measurements within a
short time interval, thus we added sparsity constraints to the
recovery problem to get the unique solution. Using features
extracted from the recovered light transport matrices, we set
up two different classification problems, and achieved high
performance. One of our key observations is that the light
transport matrix recovered using rank minimization performs
significantly better in the classification problem than those
recovered by �0 or �1 minimization.
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