Documentation for CUDA GVF 3D

Quan Wang, Yu Wang
ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA
November 2010

1 Code Description

We have two source files for this project, GVF3D.cxx and CUDAgvf3D.cu. The
GVF3D.cxx file is the ITK module and the CUDAgvf3D.cu file is the CUDA module.
Besides, we have a CMakeLists.txt file to build the ITK project with CMake.

The ITK module allocates four memory sections of the image size.

float *f = (float *) malloc(imageSize);
float *u = (float *) malloc(imageSize);
float *v = (float *) malloc(imageSize);
float *o = (float *) malloc(imageSize);

The edge map image is loaded to the memory section *f, and the memory sections *u,
*v and *o are for the GVF vector field. The CUDAgvf3D function is declared in the
ITK module as external C function.

extern "C" void CUDAgvf3D(float *f, float *u, float *v, float *o, int height, int
width, int frames, float mu, int iteration, float minValue, float range);

The CUDAgvf3D function is called by the ITK module and implemented in the
CUDA module. The arguments of this function are defined as following.

Table 1.1 Argument description of CUDAgvf3D function.

Name of Argument Description
xf The address of the memory section where the edge map
image is loaded.
*y The address of the memory section where the x direction
GVF force field is saved.
y The address of the memory section where the y direction
GVF force field is saved.
%0 The address of the memory section where the z direction
GVF force field is saved.
. The height of the edge map image. In ITK, it is the second
height
dimension of the image size type.
. The width of the edge map image. In ITK, it is the first
width
dimension of the image size type.

Documentation for CUDA GVF 3D 2

The number of frames of the edge map image. In ITK, it is
frames e . . i
the third dimension of the image size type.
mu The regularization parameter of the GVF iterative
algorithm.
iteration The number of iterations of the GVF iterative algorithm.
minValue The minimum intensity of the edge map image.
range The_range_of thfa intgnsity of t_he_ edge_ map _image. (The
maximum intensity minus the minimum intensity)

In the CUDA module, there are some parameters that we should pay attention to.

long gridWidth=32768;

long gridHeight=(width*height*frames+gridWidth-1)/gridWidth;
dim3 dimBlock(32,16);

dim3 dimGrid((gridWidth+32-1)/32,(gridHeight+16-1)/16);

The dimension of a block and grid in the GPU is limited by the GPU we use. In our
work, we use a NVIDIA GeForce 8800 GTX GPU, and the properties are as
following.

here iz 1 device supporting CUDA

Device B: "GeForce BBBH GTE"Y
CUDA Driver Uersion:
CUDA Runtime Uersion:

CUDA Capabhility Major reviszion number:
CUDA Capability Minor revision number:
Total amount of glohal memory:

Number of multiprocessors:

NHumber of cores:

Total amount of constant memory:

Total amount of shared memory per block:

Total number of registers available per block:

Uarp =size:

Maximum number of threads per block:
Maximum sizes of each dimension of a block:
Haximum sizes of each dimension of a grid:
Maximum memory pitch:

Texture alignment:

Clock rate:

Concurrent copy and execution:

RBun time limit on kernels:

Integrated:

Support host page—locked memory mapping:
Compute mode:
an use this device simultaneouslyl
Concurrent kernel execution:

Device has ECC support enabled:

i

a

885189768 hytes
16

128

65536 hytes

16384 hytes

8192

32

512

512 x 512 x 64
65535 x 65535 x 1
2147483647 hytes
256 hytes

1.35 GH=

No

Yes

Ho

Ho

Default <multiple host threads

Ho
Ho

eviceQuery. CUDA Driver = CUDART,. CUDA Driver Version = 3.18. CUDA Buntime Vers

= 3.18, Humlevs = 1. Device = GeForce 88868 GI:

ion

Figure 1.1 GPU properties in this project.

Documentation for CUDA GVF 3D 3

2 Requirements

2.1 Hardware Requirements

A CUDA-enabled GPU is required to run this project, which can be found on the
NVIDIA CUDA Web site at http://www.nvidia.com/object/cuda_gpus.html.

2.2 Software Requirements

To use the ITK libraries, ITK toolkit should have been installed on the computer. Visit
http://www.itk.org/.

To use CUDA, the following should have been installed:

(1) The CUDA Driver, which can be found at http://www.nvidia.com/drivers.

(2) The CUDA Toolkit, which contains the tools needed to compile and build a
CUDA application in conjunction with Microsoft Visual Studio.

(3) The GPU Computing SDK.

The CUDA Toolkit and the GPU Computing SDK can be found at
http://developer.nvidia.com/object/cuda 3 2 downloads.html.

To configure a project in Windows, these softwares are required:

(1) CMake, which is wused to build the project. It can be found at
http://www.cmake.org/cmake/resources/software.html.

(2) Microsoft Visual Studio.

To view 3D images and GVF force field, ImageJ and Paraview might be used.

3 Project Configuration for Windows

3.1 Build Project for ITK module

If ITK toolkit and CMake have already been installed, we can build a Microsoft
Visual Studio project for the ITK module. First we create a new folder, and copy the
GVF3D.cxx file and the CMakeLists.txt file to that folder. Then we run CMake, and
set the source code location as this folder. Set the binaries location, and click
configure button. You should be asked to specify what generator you will use for this
project. Click the configure button again and click the generate button, and the project
will be generated. For example, if you are using Microsoft Visual Studio 2005 or 2008,
a project file named GVF3D.sIn will be generated.

http://www.nvidia.com/object/cuda_gpus.html
http://www.itk.org/
http://www.nvidia.com/drivers
http://developer.nvidia.com/object/cuda_3_2_downloads.html
http://www.cmake.org/cmake/resources/software.html

Documentation for CUDA GVF 3D 4

. CMake 2_8.0 - K:/Programs/build

File Tools Options Help

Where is the source code: |K:IPngramsIcode | [Bru:uwse Source.. l
Where to build the binarias: |K:.I'F‘r0grams,l'build V| [Browse Build. ..]
Search: | |Sim|:u|e Yigw V| [* Add Entry] 3 Remove Entry
Mame Yalue

Press Configure to update and display new walues in red, then press Generate ko generate selected build Files,

Generate Current Generator; Yisual Studio 9 2008

Check for working C compiler: ol

Check for working C compiler: ol -- works
Detecting C compiler ABT info

Detecting C compiler ABT info - done

Check for working G compiler: ol

Check for working G compiler: ol —-- works

Detecting CX¥ compiler ABTI info
Detecting CxH compiler ABT info - done
CHake Warning (dew) in CHMakelists.txt:
Ho cmake minimum recquired command is present. A line of code such as

conake minimum recquired (VERSION Z.2)
should be added at the top of the file. The wersion specified may be lower
if wou wish to support older CMake wersions for this project. For more
information ran "cmake --help-policy CHMPOOOO" .

This warning is for project dewvelopers. Use -Tho-dewv to suppress it.

Configuring done

Figure 3.1.1 CMake interface.

3.2 Add CUDA File to Project

Assume that we have opened the ITK project with Microsoft Visual Studio. First, we
copy the CUDAgvf3D.cu file to the folder where the project has been built. Then we
add this file as a source file to this project. There are several ways to configure a .cu
file in the project. We will introduce two ways, using the CUDA rules from SDK and
manually modifying the properties.

To use the CUDA rules of SDK, first right click on the GVF3D project, and select
"Custom Build Rules". Then click on "New Rule File", add the
SDK/C/common/Cuda.rules file to the rule files, and enable this rule. Now we right
click on the .cu file and select "Properties”. Set Configuration Properties - General
-Tool as the CUDA Build Rule.

Another way is to modify the properties manually. Right click on the .cu file and
select "Properties”. Set Configuration Properties - Custom Build Step - General -

Documentation for CUDA GVF 3D 5

Command Line as

“$(CUDA_BIN_PATH)\nvcc.exe” -ccbin “$(VClnstallDir)bin” -¢c -D_DEBUG -DWIN32
-D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/0d,/Zi,/MTd
-I"$(CUDA_INC_PATH)” -1./ -0 $(ConfigurationName)\CUDAgvf3D.obj CUDAgVf3D.cu

Set Configuration Properties - Custom Build Step - General - Outputs as

$(ConfigurationName)\CUDAgvf3D.obj

3.3 Set Project Properties

Right click on the GVF3D project and select "Properties”. Set Configuration
Properties - C/C++ - General - Additional Include Directories as

$(CUDA_INC_PATH);"C:\Program Files\NVIDIA Corporation\NVIDIA CUDA
SDK\common\inc”

Add “C:\CUDA\ib” and "C:\Program Files\NVIDIA Corporation\NVIDIA CUDA
SDK\commonl\lib” to Configuration Properties - Linker - General - Additional Library
Directories. Add cudart.lib and cutil32D.lib to Configuration Properties - Linker - Input
- Additional Dependencies. And set Configuration Properties - Linker - Optimization -
Enable COMDAT folding as

Do Not Remove Redundant COMDATs (/OPT:NOICF)

Now build the solution, and we should have the executable file GVF3D.exe generated
in the Debug folder or Release folder.

If the building process ends with library conflict errors, right click on the GVF3D
project and select "Properties”, then add the conflicting libraries to Configuration
Properties - Linker - Input - Ignore Specific Library. For example, the libcmtd.lib
might conflict with some ITK or CUDA libraries.

4 Running the Programs

There should be at least one and at most three input arguments for the GVF3D.exe
main function. The order of arguments is the file name of edge map image, the
regularization parameter ux, and the number of iterations. If we only input two
arguments (file name and), the default number of iterations is 50. If we only input
one argument (file name), the default regularization parameter x is 0.2. For example,
if we want to compute the GVF force field of the 3D edge map image 01.tif with
1=0.2 for 50 iterations, we can type the command line in these three ways:

Documentation for CUDA GVF 3D 6

GVF3D 01.tif
GVF3D O01.tif 0.2
GVF3D O01.tif 0.2 50

After running the GVF3D program, six files will be generated, u.mhd, v.mhd, 0.mhd,
u.raw, v.raw, and o.raw. The .mhd files are the image information files, and the .raw
files are the raw data.

The program will also record and display the time needed for the CUDA module,
covering the normalization of edge map image, initialization, and iterative algorithm.

If the image size is too large, there might be not enough device memory on the GPU
to perform the parallel computing. The program will display memory allocation status
before the iterative algorithm. If the memory allocation fails, the program will
automatically terminate, implying that the GPU memory is not enough for the input
image, and a GPU with larger memory should be used.

