

Documentation for CUDA GVF 3D

Quan Wang, Yu Wang

ECSE, Rensselaer Polytechnic Institute, Troy, NY, USA

November 2010

1 Code Description

We have two source files for this project, GVF3D.cxx and CUDAgvf3D.cu. The

GVF3D.cxx file is the ITK module and the CUDAgvf3D.cu file is the CUDA module.

Besides, we have a CMakeLists.txt file to build the ITK project with CMake.

The ITK module allocates four memory sections of the image size.

 float *f = (float *) malloc(imageSize);

 float *u = (float *) malloc(imageSize);

 float *v = (float *) malloc(imageSize);

 float *o = (float *) malloc(imageSize);

The edge map image is loaded to the memory section *f, and the memory sections *u,

*v and *o are for the GVF vector field. The CUDAgvf3D function is declared in the

ITK module as external C function.

extern "C" void CUDAgvf3D(float *f, float *u, float *v, float *o, int height, int

width, int frames, float mu, int iteration, float minValue, float range);

The CUDAgvf3D function is called by the ITK module and implemented in the

CUDA module. The arguments of this function are defined as following.

Table 1.1 Argument description of CUDAgvf3D function.

Name of Argument Description

*f
The address of the memory section where the edge map

image is loaded.

*u
The address of the memory section where the x direction

GVF force field is saved.

*v
The address of the memory section where the y direction

GVF force field is saved.

*o
The address of the memory section where the z direction

GVF force field is saved.

height
The height of the edge map image. In ITK, it is the second

dimension of the image size type.

width
The width of the edge map image. In ITK, it is the first

dimension of the image size type.

Documentation for CUDA GVF 3D

2

frames
The number of frames of the edge map image. In ITK, it is

the third dimension of the image size type.

mu
The regularization parameter of the GVF iterative

algorithm.

iteration The number of iterations of the GVF iterative algorithm.

minValue The minimum intensity of the edge map image.

range
The range of the intensity of the edge map image. (The

maximum intensity minus the minimum intensity)

In the CUDA module, there are some parameters that we should pay attention to.

 long gridWidth=32768;

 long gridHeight=(width*height*frames+gridWidth-1)/gridWidth;

 dim3 dimBlock(32,16);

 dim3 dimGrid((gridWidth+32-1)/32,(gridHeight+16-1)/16);

The dimension of a block and grid in the GPU is limited by the GPU we use. In our

work, we use a NVIDIA GeForce 8800 GTX GPU, and the properties are as

following.

Figure 1.1 GPU properties in this project.

Documentation for CUDA GVF 3D

3

2 Requirements

2.1 Hardware Requirements

A CUDA-enabled GPU is required to run this project, which can be found on the

NVIDIA CUDA Web site at http://www.nvidia.com/object/cuda_gpus.html.

2.2 Software Requirements

To use the ITK libraries, ITK toolkit should have been installed on the computer. Visit

http://www.itk.org/.

To use CUDA, the following should have been installed:

(1) The CUDA Driver, which can be found at http://www.nvidia.com/drivers.

(2) The CUDA Toolkit, which contains the tools needed to compile and build a

CUDA application in conjunction with Microsoft Visual Studio.

(3) The GPU Computing SDK.

The CUDA Toolkit and the GPU Computing SDK can be found at

http://developer.nvidia.com/object/cuda_3_2_downloads.html.

To configure a project in Windows, these softwares are required:

(1) CMake, which is used to build the project. It can be found at

http://www.cmake.org/cmake/resources/software.html.

(2) Microsoft Visual Studio.

To view 3D images and GVF force field, ImageJ and Paraview might be used.

3 Project Configuration for Windows

3.1 Build Project for ITK module

If ITK toolkit and CMake have already been installed, we can build a Microsoft

Visual Studio project for the ITK module. First we create a new folder, and copy the

GVF3D.cxx file and the CMakeLists.txt file to that folder. Then we run CMake, and

set the source code location as this folder. Set the binaries location, and click

configure button. You should be asked to specify what generator you will use for this

project. Click the configure button again and click the generate button, and the project

will be generated. For example, if you are using Microsoft Visual Studio 2005 or 2008,

a project file named GVF3D.sln will be generated.

http://www.nvidia.com/object/cuda_gpus.html
http://www.itk.org/
http://www.nvidia.com/drivers
http://developer.nvidia.com/object/cuda_3_2_downloads.html
http://www.cmake.org/cmake/resources/software.html

Documentation for CUDA GVF 3D

4

Figure 3.1.1 CMake interface.

3.2 Add CUDA File to Project

Assume that we have opened the ITK project with Microsoft Visual Studio. First, we

copy the CUDAgvf3D.cu file to the folder where the project has been built. Then we

add this file as a source file to this project. There are several ways to configure a .cu

file in the project. We will introduce two ways, using the CUDA rules from SDK and

manually modifying the properties.

To use the CUDA rules of SDK, first right click on the GVF3D project, and select

"Custom Build Rules". Then click on "New Rule File", add the

SDK/C/common/Cuda.rules file to the rule files, and enable this rule. Now we right

click on the .cu file and select "Properties". Set Configuration Properties - General

-Tool as the CUDA Build Rule.

Another way is to modify the properties manually. Right click on the .cu file and

select "Properties". Set Configuration Properties - Custom Build Step - General -

Documentation for CUDA GVF 3D

5

Command Line as

“$(CUDA_BIN_PATH)\nvcc.exe” -ccbin “$(VCInstallDir)bin” -c -D_DEBUG -DWIN32

-D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/MTd

-I”$(CUDA_INC_PATH)” -I./ -o $(ConfigurationName)\CUDAgvf3D.obj CUDAgvf3D.cu

Set Configuration Properties - Custom Build Step - General - Outputs as

$(ConfigurationName)\CUDAgvf3D.obj

3.3 Set Project Properties

Right click on the GVF3D project and select "Properties". Set Configuration

Properties - C/C++ - General - Additional Include Directories as

$(CUDA_INC_PATH);”C:\Program Files\NVIDIA Corporation\NVIDIA CUDA

SDK\common\inc”

Add “C:\CUDA\lib” and ”C:\Program Files\NVIDIA Corporation\NVIDIA CUDA

SDK\common\lib” to Configuration Properties - Linker - General - Additional Library

Directories. Add cudart.lib and cutil32D.lib to Configuration Properties - Linker - Input

- Additional Dependencies. And set Configuration Properties - Linker - Optimization -

Enable COMDAT folding as

Do Not Remove Redundant COMDATs (/OPT:NOICF)

Now build the solution, and we should have the executable file GVF3D.exe generated

in the Debug folder or Release folder.

If the building process ends with library conflict errors, right click on the GVF3D

project and select "Properties", then add the conflicting libraries to Configuration

Properties - Linker - Input - Ignore Specific Library. For example, the libcmtd.lib

might conflict with some ITK or CUDA libraries.

4 Running the Programs

There should be at least one and at most three input arguments for the GVF3D.exe

main function. The order of arguments is the file name of edge map image, the

regularization parameter μ, and the number of iterations. If we only input two

arguments (file name and μ), the default number of iterations is 50. If we only input

one argument (file name), the default regularization parameter μ is 0.2. For example,

if we want to compute the GVF force field of the 3D edge map image 01.tif with

μ=0.2 for 50 iterations, we can type the command line in these three ways:

Documentation for CUDA GVF 3D

6

GVF3D 01.tif

GVF3D 01.tif 0.2

GVF3D 01.tif 0.2 50

After running the GVF3D program, six files will be generated, u.mhd, v.mhd, o.mhd,

u.raw, v.raw, and o.raw. The .mhd files are the image information files, and the .raw

files are the raw data.

The program will also record and display the time needed for the CUDA module,

covering the normalization of edge map image, initialization, and iterative algorithm.

If the image size is too large, there might be not enough device memory on the GPU

to perform the parallel computing. The program will display memory allocation status

before the iterative algorithm. If the memory allocation fails, the program will

automatically terminate, implying that the GPU memory is not enough for the input

image, and a GPU with larger memory should be used.

