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We present a novel approach for fitting a geometric shape in images. Similar to active shape models and
active contours, a force field is used in our approach. But the object to be detected is described with a
geometric shape, represented by parametric equations. Our model associates each parameter of this geo-
metric shape with a combination of integrals (summations in the discrete case) of the force field along the
contour. By iteratively updating the shape parameters according to these integrals, we are able to find the
optimal fit of the shape in the image. In this paper, we first explore simple cases such as fitting a line,
circle, ellipse or cubic spline contour using this approach. Then we employ this technique to detect the
cross-sections of subarachnoid spaces containing cerebrospinal fluid (CSF) in phase-contrast magnetic
resonance (PC-MR) images, where the object of interest can be described by a distorted ellipse. The detec-
tion results can be further used by an s–t graph cut to generate a segmentation of the CSF structure. We
demonstrate that, given a properly configured geometric shape model and force field, this approach is
robust to noise and defects (disconnections and non-uniform contrast) in the image. By using a geometric
shape model, this approach does not rely on large training datasets, and requires no manual labeling of
the training images as is needed when using point distribution models.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

We consider two classes of problems: (1) detect and segment an
object in the image, where we have some prior knowledge about
the shape of the object and (2) fit a geometric shape to the image.
These two problems become very similar when the shape of the
object to be detected can be described in a geometric form. In this
section, we first review the model-based image analysis methods,
which are developed to solve the first class of problems. Then we
talk about existing techniques for solving the second class of prob-
lems. We will show how our work combines the two endeavors to
solve a more difficult problem: detect and segment an object
described by a geometric shape without using training data.

1.1. Model-based image analysis

Model-based image analysis is a popular approach to extract
high-level information from images. By incorporating prior knowl-
edge, which can be learned from training data or hypotheses of the
specific problem, model-based methods offer good performance
and robustness in a number of domains.
ll rights reserved.
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For most model-based methods, the two major steps are to train
the parameters of the model as part of the system design and then,
in operation, to fit the model to images. Examples include the well
known active shape models (ASMs) [1] and active appearance
models (AAMs) [2] proposed by Cootes, where the prior knowledge
is obtained statistically by performing a principal component anal-
ysis (PCA) on the covariance matrix of a point distribution model
(PDM). Another popular model is Kass’ active contour model
(snakes) [3], which fits smooth closed curves to images using an
energy minimization criterion. By defining an internal energy
and an external energy, which correspond to the smoothness and
data faithfulness of the model respectively, and by fitting the mod-
el iteratively, the resulting curve is expected to achieve an optimal
balance between smoothness and accuracy. In 1997, Xu and Prince
improved the active contour model by applying a new external
force, known as the gradient vector flow (GVF) [4]. In 2006,
Gotardo et al. introduced the interframe smoothness energy and
the Fourier domain interpretation [5] into the active contour mod-
el, thus generalizing this model for time lapse image sequence
analysis [6]. These models are widely used in various applications,
such as image segmentation [7], object tracking [8], face recogni-
tion [9], neuron tracing [10], and the detection of pathologies in
medical images [6].

However, adding prior knowledge to these models has always
been a difficult and interesting issue. Statistical models, such as
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ASMs and AAMs, are based on point distributions, and therefore
are not suitable for shapes without salient feature points such as
angles, inflection points, or points of salient curvature because of
the inaccuracy of manual annotation. Besides, when a large train-
ing dataset is not available, statistical models should not be used
in any case. Because the original active contour models only use
smoothness and data faithfulness to fit the model, it is essential
to incorporate prior knowledge in the form of initial conditions,
data constraints, or constraints on model shape parameters into
the model fitting procedures [11].

Our active geometric shape model (AGSM) combines geometric
shapes with deformability. In our model, the shapes of interest are
usually represented by parametric equations. Fitting the shape to
the image then becomes a problem of finding the set of parameters
of the shape that best fits the image data. By taking different line
integrals of a force field generated from the image, we associate
each shape parameter with a force or torque. Then we establish
our iterative update criteria for each shape parameter according
to the forces or torques. By adding constraints to the shape param-
eters, the resulting shape will always be acceptable, thus avoiding
unexpected shapes at all times. With a carefully selected force field
and form of integrals, this model is robust to severe noise and de-
fects such as disconnections and non-uniform contrast in the image.
In this paper, the active geometric shape model is used to detect the
CSF structures in PC-MR images, where the shape has no salient
points, little training data is available, and the images are usually
very noisy. We represent the shape of interest as a distorted ellipse
having five parameters. By adjusting the parameters according to
the force field, our model converges accurately to the CSF structure.

1.2. Geometric shape fitting

There are various ways to fit a geometric shape to data. The best
known methods are least squares and weighted least squares [12].
However, it is generally difficult to analytically solve the least
squares fit for a complicated shape, and it is not suitable for shape
detection in the image, where the data cannot be directly used as
the input to the least squares problem.

Another famous technique is the Hough transform, which solves
the geometric shape fitting problem by a voting procedure in the
parameter space [13]. However, for a geometric shape with N
parameters, the voting procedure is performed in an N-dimensional
parameter space, and the vote of each data is an ðN � 1Þ-dimen-
sional manifold, which could be very complicated itself. By making
use of the directional information associated with edges, Ballard’s
Hough transform for analytic curves reduced the dimension of each
vote to N � 2 [14]. But the cost of the Hough transform still increases
exponentially as the number of parameters of the shape increases.
Ballard also generalized the Hough transform for arbitrary shapes
represented by a set of boundary points xBf g relative to some refer-
ence origin y [14]. This technique uses a fixed 4-dimensional param-
eter space xc; yc; s; hf g for any shape, where ðxc; ycÞ is the reference
origin of the shape, s is the scale factor, and h is the rotation factor.
However, the generalized Hough transform still performs a brute-
force search in the scaling and rotation space, and fails to consider
other deformation patterns apart from size and orientation.

In our active geometric shape model, each parameter is updated
at each iteration. As the number of parameters increases, the cost
of our model only increases linearly. Besides, unlike Hough trans-
form, our model relies only on the force field derived from the im-
age, and this image can be either gray-level or binary.

2. Methods

If the object of interest can be described by a geometric shape,
then the features of the object can be described by the parameters
of the geometric shape model. For example, a straight line can be
described by two parameters: the distance s from the line to the
origin, and the orientation h of the vector from the origin to the
closest point on this line. A circle can be described by three param-
eters: the radius r and the coordinates of the center ðxc; ycÞ. For an
ellipse in standard orientation (aligned with the coordinate axes),
there are four parameters: the semi-major axis length a, the
semi-minor axis length b, and the coordinates of the center
ðxc; ycÞ. And for an ellipse with arbitrary orientation, the orienta-
tion / is another parameter. In this section, we will first review
the concept of force field, which is widely used for deformable mod-
els. Next we will discuss the active geometric shape models for the
above mentioned four cases. Then we will propose two more com-
plicated shapes: the distorted ellipse and the cubic spline contour.

2.1. Deformable models and force field

Both active shape models and active contour models are applied
by configuring the model according to a certain vector force field
over the image, with each vector pointing to edges or ridges of re-
gions of interest in the image. In active shape models, each model
point (also called landmark) moves along the force field in each
iteration [1]. In active contour models, the snakes move along
the gradient of the external energy, which is equivalent to a force
field [3]. A gray-level image Iðx; yÞ can be viewed as a function of
continuous position variables ðx; yÞ. To lead the deformable model
toward step edges, the external energy can be defined as [15]

Eð1Þextðx; yÞ ¼ �krIðx; yÞk2
; ð1Þ

Eð2Þextðx; yÞ ¼ �krðGrðx; yÞ � Iðx; yÞÞk2
; ð2Þ

where r is the gradient operator and Grðx; yÞ is the 2-dimensional
Gaussian function with standard deviation r. In (2), the image is
blurred using a Gaussian function to reduce the noise and increase
the capture range of the force field. If we require the deformable
model to converge to the gray-level maxima, then appropriate def-
initions of external energy include

Eð3Þextðx; yÞ ¼ �Iðx; yÞ; ð3Þ

Eð4Þextðx; yÞ ¼ �Grðx; yÞ � Iðx; yÞ: ð4Þ

Gradient vector flow, which is computed as a diffusion of the gradi-
ent vectors of the negative external energy derived from the image,
is another form of force field, and is expected to have much larger
capture range than other force fields [4]. The gradient vector field
is defined as the vector field vðx; yÞ ¼ ½uðx; yÞ; vðx; yÞ� that mini-
mizes the energy functional

E ¼
ZZ

lðu2
x þ u2

y þ v2
x þ v2

yÞ þ krfk2kv �rfk2
� �

dxdy: ð5Þ

Here f ðx; yÞ is the negative of the external energy derived from the
image Iðx; yÞ, defined as

f ðx; yÞ ¼ �EðiÞextðx; yÞ; ð6Þ

where i = 1, 2, 3 or 4. In this paper, we use gradient vector flow
vðx; yÞ as our force field, and set f ðx; yÞ ¼ �Eð4Þextðx; yÞ in (5). This force
field can be solved using calculus of variations, and can be com-
puted by numerical iteration [15].

2.2. Fitting a line

The equation of a straight line can be written as [16]

x cos hþ y sin h� s ¼ 0; ð7Þ

where s is the distance from the line to the origin and h is the ori-
entation of the vector from the origin to the closest point on this
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line. To update these two parameters iteratively, we define two
integrals (we are going to use the word integral as equivalent to
summation for the discrete case in the present context) that corre-
spond to the geometric interpretation of the parameters. Assume
we are working on an image, and the discrete pixels on the line
are represented as ðxi; yiÞwhere 1 6 i 6 N, and xi 6 xj if i < j. Instead
of vðx; yÞ ¼ ½uðx; yÞ;vðx; yÞ�, which is defined as the solution of the
optimization problem (5), from now on we use the notation
Fðx; yÞ ¼ ½Fxðx; yÞ; Fyðx; yÞ� for the force field vector at pixel ðx; yÞ.

2.2.1. Updating s
For the distance parameter s, we can define an average normal

force, which is the integral of the projection of the force field onto
the normal vector ½cos h; sin h�T along the line normalized by the
length N:

Fn ¼
1
N

XN

i¼1

Fðxi; yiÞ �
cos h

sin h

� �
: ð8Þ

Here the ‘‘�’’ represents the dot product of two vectors. If Fn is larger
than 0, this average normal force tends to push the line further from
the origin. If Fn is smaller than 0, it tends to pull the line towards the
origin. Defining ds as the step we use to update s in each iteration,
and ts as the tolerance for Fn (a tolerance is a threshold that if the
magnitude of force is smaller than it, the parameter will not be up-
dated), we use this criterion to update s:

snew ¼ sþ ds if Fn > ts

snew ¼ s� ds if Fn < �ts

�
: ð9Þ
2.2.2. Updating h
For the orientation parameter h, instead of force, we define an

average torque which tends to rotate the line around a fulcrum.
If we pick ðxk; ykÞ as our fulcrum, which is on the current estimate
of the line, we can define the average torque Tk as

Tk ¼
1

N2

XN

i¼1

sgnðk� iÞdikFðxi; yiÞ �
cos h

sin h

� �
; ð10Þ

where

dik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xkÞ2 þ ðyi � ykÞ

2
q

ð11Þ

is the distance between ðxi; yiÞ and ðxk; ykÞ, and sgnð�Þ is the sign
function. Here the normalization factor is 1=N2 instead of 1=N be-
cause when the number of pixels on the line increases, the average
distance from ðxi; yiÞ to the fulcrum also increases. The fulcrum
should be selected to maximize the absolute value of the torque:

~k ¼ arg max
k
jTkj; ð12Þ

T ¼ T~k: ð13Þ

Define dh as the step we use to update h in each iteration, and th as
the tolerance for T. If h 2 ½0;pÞ, the criterion for updating h is

hnew ¼ h� dh if T > th

hnew ¼ hþ dh if T < �th

�
: ð14Þ

If h 2 ½p; 2pÞ, just substitute dh by �dh in (14). Since ðxi; yiÞ is de-
fined such that xi 6 xj if i < j, the sign function in (10) guarantees
that the line rotates in the correct direction. Because we are rotating
the line around point ðx~k; y~kÞ, we need to adjust s according to hnew,
which is

snew ¼ x~k cos hnew þ y~k sin hnew: ð15Þ

This will ensure that after updating parameters according to the
torque about ðx~k; y~kÞ, the line still passes through ðx~k; y~kÞ. Note that
s is updated twice in each iteration: first updated according to the
average normal force using (9); then updated as a fix for the up-
dated h using (15).

Because there are two parameters to update, in each iteration
we first compute all forces and torques using current parameters,
and then update all parameters using these forces and torques.
In this way, the order in which we update different parameters
does not affect the updating results. We will follow this philosophy
for all other shapes in the following sections.

2.3. Fitting a circle

For a circle, we use the parametric equations

x ¼ xc þ r cos h

y ¼ yc þ r sin h

�
; ð16Þ

where ðxc; ycÞ is the center of the circle, r is the radius, and h varies
in ½0; 2pÞ. Assume we are working on an image, and each pixel on
the circle corresponds to a hi value where 1 6 i 6 N, and hi < hj if
i < j. Let the coordinates of the pixel corresponding to hi be
ðxi; yiÞ, or more specifically,

xi ¼ xc þ r cos hi

yi ¼ yc þ r sin hi

�
: ð17Þ
2.3.1. Updating xc and yc

To move the circle to the expected position, we update its cen-
ter coordinates xc and yc at each iteration. We define four forces,
corresponding to horizontal, vertical, diagonal and anti-diagonal
movement respectively:

Fch ¼
1
N

XN

i¼1

Fðxi; yiÞ � ½1;0�
T
; ð18Þ

Fcv ¼
1
N

XN

i¼1

Fðxi; yiÞ � ½0;1�
T
; ð19Þ

Fcd ¼
1
N

XN

i¼1

Fðxi; yiÞ �
ffiffiffi
2
p

2
;

ffiffiffi
2
p

2

" #T

; ð20Þ

Fca ¼
1
N

XN

i¼1

Fðxi; yiÞ � �
ffiffiffi
2
p

2
;

ffiffiffi
2
p

2

" #T

: ð21Þ

Assuming that dxc and dyc are the steps to update xc and yc in each
iteration, and tc is the tolerance for the four forces, our criteria for
updating xc and yc are

xcnew ¼ xc þ dxc if Fch > tc or Fcd > tc or Fca < �tc

xcnew ¼ xc � dxc if Fch < �tc or Fcd < �tc or Fca > tc

(
; ð22Þ

ycnew ¼ yc þ dyc if Fcv > tc or Fcd > tc or Fca > tc

ycnew ¼ yc � dyc if Fcv < �tc or Fcd < �tc or Fca < �tc

�
: ð23Þ
2.3.2. Updating r
The radius r of the circle corresponds to the average normal

force, which tends to expand or shrink the circle along the radial
direction. The average normal force is defined as

Fn ¼
1
N

XN

i¼1

Fðxi; yiÞ �
cos hi

sin hi

� �
: ð24Þ

If dr is the step we use to update r in each iteration, and tr is the tol-
erance for Fn, then the updating criterion is

rnew ¼ r þ dr if Fn > tr

rnew ¼ r � dr if Fn < �tr

(
: ð25Þ
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2.4. Fitting an ellipse in standard orientation

The parametric equations of an ellipse whose major and minor
axes are parallel to the x-axis and y-axis, respectively, are

x ¼ xc þ a cos h

y ¼ yc þ b sin h

�
; ð26Þ

where a is the semi-major axis, b is the semi-minor axis, ðxc; ycÞ is
the center, and h varies in ½0; 2pÞ. Due to the similarity with the
parametric equations of a circle, the coordinates of the center
ðxc; ycÞ can be updated using the same criteria.

2.4.1. Updating a and b
We define two forces Fa and Fb for a and b, representing the hor-

izontal and vertical inward squeeze respectively:

Fa ¼
1

Na

X
3p
4 <hi<

5p
4

Fðxi; yiÞ � ½1; 0�T þ
X

hi<
p
4 or hi>

7p
4

Fðxi; yiÞ � ½�1; 0�T
0
@

1
A;
ð27Þ

Fb ¼
1

Nb

X
5p
4 <hi<

7p
4

Fðxi; yiÞ � ½0; 1�T þ
X

p
4<hi<

3p
4

Fðxi; yiÞ � ½0; �1�T
0
@

1
A; ð28Þ

where

Na ¼
X

3p
4 <hi<

5p
4

1þ
X

hi<
p
4 or hi>

7p
4

1; ð29Þ

Nb ¼
X

5p
4 <hi<

7p
4

1þ
X

p
4<hi<

3p
4

1: ð30Þ

The integral of Fa is performed on the left quarter and right quarter
of the ellipse, and the integral of Fb is on the lower quarter and
upper quarter of the ellipse. Na and Nb are the numbers of pixels
in each integral respectively. Given the steps da and db, and the tol-
erance ta and tb, we form our updating criteria as

anew ¼ a� da if Fa > ta

anew ¼ aþ da if Fa < �ta

�
; ð31Þ

bnew ¼ b� db if Fb > tb

bnew ¼ bþ db if Fb < �tb

�
: ð32Þ
2.5. Fitting an ellipse with arbitrary orientation

For an ellipse with orientation /, the parametric equations
become

x ¼ xc þ a cos h cos /� b sin h sin /

y ¼ yc þ a cos h sin /þ b sin h cos /

�
: ð33Þ

The coordinates of the center ðxc; ycÞ, the semi-major axis a, and the
semi-minor axis b can be updated using similar criteria as fitting an
ellipse in standard orientation. But note that in (27) and (28),
½1; 0�T; ½�1; 0�T; ½0; 1�T and ½0; �1�T should be replaced by
½cos /; sin /�T; ½� cos /; � sin /�T; ½� sin /; cos /�T and
½sin /; � cos /�T respectively.

2.5.1. Updating /
For the orientation / we again define an average torque that ro-

tates the ellipse around its center. The average torque about the
center is defined as

Tc ¼
1

N2

XN

i¼1

di Fðxi; yiÞ �
� sinðhþ /Þ
cosðhþ /Þ

� �
; ð34Þ
where

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xcÞ2 þ ðyi � ycÞ

2
q

ð35Þ

is the distance between ðxi; yiÞ and the center ðxc; ycÞ. Defining d/ as
the step we use to update / in each iteration, and t/ as the tolerance
for Tc , the criterion for updating / is

/new ¼ /þ d/ if Tc > t/

/new ¼ /� d/ if Tc < �t/

�
: ð36Þ
2.6. Fitting a distorted ellipse

As an extension of the ellipse fitting framework, we now devel-
op a new shape called distorted ellipse. The distorted ellipse model
will be used to describe the shape of the CSF structure in Section 4.
The parametric equations of a distorted ellipse are

x ¼ xc þ a cos h

y ¼ yc þ b 1� ð1� sin hÞp
� 	

(
: ð37Þ

Here ðxc; ycÞ is the center of the undistorted ellipse, a and b are the
semi-major axis and semi-minor axis respectively, p is the distor-
tion parameter, and h is between 0 and 2p. We give some example
shapes of the distorted ellipse model in Fig. 1. For CSF structure
detection, we require p > 1.

2.6.1. Updating p
To fit this distorted ellipse model to an image, we update

xc; yc; a and b the same way as we update them for an ellipse in
standard orientation (Section 2.4). We define the force Fp for p sim-
ilarly as Fa and Fb, but only on the most protruding part (the lower
eighth in this example) of the distorted ellipse:

Fp ¼
1

Np

X
11p

8 <hi<
13p

8

Fðxi; yiÞ � ½0; 1�T; ð38Þ

where

Np ¼
X

11p
8 <hi<

13p
8

1: ð39Þ

Given the step dp and the tolerance tp, the updating criterion is

pnew ¼ p� dp if Fp > tp

pnew ¼ pþ dp if Fp < �tp

(
: ð40Þ
2.7. Fitting an arbitrary smooth closed contour

So far we have discussed how to configure an active geometric
shape model for lines, circles, ellipses and distorted ellipses. Now
we further generalize our model to more complicated shapes: arbi-
trary smooth closed contours. To represent a closed contour, unlike
the active contour model, which records all points (pixels) along
the contour [3], we model the shape using only a limited number
of landmarks, and determine the location of other points by cubic
spline interpolation [17].

2.7.1. Abstraction of the shape
Assume the center of the shape is ðxc; ycÞ, and we use Nlm land-

marks to represent the shape: P1; P2; . . . ; PNlm
. The distance from the

landmark Pk to the center is Dk, and the orientation of the vector
from the center to Pk is Hk, where we further assume

Hk ¼ ðk� 1Þ 2p
Nlm

: ð41Þ

Then the coordinates of landmark Pk are
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Fig. 1. Example shapes of the distorted ellipse model, where a ¼ 2 and b ¼ 1, and (a) p ¼ 0:8; (b) p ¼ 1; (c) p ¼ 1:5; and (d) p ¼ 1:8.
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xPk
¼ xc þ Dk cos Hk

yPk
¼ yc þ Dk sin Hk

(
: ð42Þ

For any point Q on the shape, assume its orientation (with respect to
the center) is hQ , and the distance to the center is dQ . Then dQ can be
considered as a function of hQ , which we denote as

dQ ¼ gðhQ Þ: ð43Þ

We already know that D1 ¼ gðH1Þ;D2 ¼ gðH2Þ, . . ., DNlm
¼ gðHNlm

Þ,
thus given hQ , we can obtain dQ by approximating gð�Þ using cubic
spline interpolation [17]. Such shapes will be called cubic spline con-
tours in the context. Examples of cubic spline contours are shown in
Fig. 2. Note that circle is also a cubic spline contour with Nlm ¼ 1
and D1 ¼ r.

2.7.2. Updating parameters
For a cubic spline contour described above, if Nlm is already gi-

ven, then our shape model has Nlm þ 2 parameters in total: xc; yc

and D ¼ ðD1;D2; . . . ;DNlm
Þ. xc and yc can be updated in a similar

way as circles and ellipses – take the integral of the force field
along the shape and project it onto four directions (Section
2.3.1). Now we focus on updating each Dk. Assume we are working
on an image, and the N pixels ðxi; yiÞ on the contour are repre-
sented as

xi ¼ xc þ di cos hi

yi ¼ yc þ di sin hi

�
: ð44Þ

We define a force FDk
for each Dk:

FDk
¼ 1

NDk

X
Hk� p

Nlm
<hi<Hkþ p

Nlm

Fðxi; yiÞ � ½cos hi; sin hi�T: ð45Þ

Defining dD as the step we use to update Dk in each iteration, and tD

as the tolerance for Dk, the criterion for updating Dk is

Dknew ¼ Dk þ dD if Dk > tD

Dknew ¼ Dk � dD if Dk < �tD

�
: ð46Þ
2.8. More about parameter updating

Generally, for a geometric shape model, we associate a param-
eter a with a force (or torque) Fa. We define the precision of a to be
da, which is the smallest update step of a allowed in one iteration
(in previous sections it is also the only update step being used). We
also define the tolerance of Fa to be ta, which means that if the
absolute value of Fa is smaller than ta;a will not be updated in this
iteration. Then the simplest update criterion, as we have already
described, would be
anew ¼ aþ da if Fa > ta

anew ¼ a� da if Fa < �ta

(
: ð47Þ

The sign before da in (47) can be opposite, depending on the defini-
tion of Fa.

However, using a constant update step da is generally ineffi-
cient, since the required precision could be very small. An alterna-
tive approach is to scale the step with the magnitude of Fa. Since
we cannot allow the step to be arbitrarily large, we scale it using
a sigmoid-like function gð�Þ. Let Da be the largest step allowed in
each iteration; the scaling function gðFaÞ must then satisfy

gðtaÞ ¼ da; ð48Þ

lim
jFa j!1

jgðFaÞj ¼ Da: ð49Þ

Then our updating criterion becomes

anew ¼ aþ gðFaÞ: ð50Þ

Available choices of gðFaÞ include

g1ðFaÞ ¼
2
p

Da arctan
Fa

ta
tan

pda
2Da


 �
; ð51Þ

g2ðFaÞ ¼ Da tanh
Fa

2ta
ln

Daþ da
Da� da


 �
; ð52Þ

g3ðFaÞ ¼ DaFa F2
a þ t2

a ð
Da
da
Þ2 � 1


 �
 ��1
2

; ð53Þ

g4ðFaÞ ¼ Da sgnðFaÞ þ
ta
Fa

Da
da
� 1


 �
 ��1

: ð54Þ

We provide a plot of these four sigmoid-like scaling functions in
Fig. 3. We can see that, among these four functions, with the same
input Fa; g2 has the largest update step, g3 second largest, and g4

smallest.
Again, we emphasize that the order in which we update differ-

ent parameters does not affect the updating results. This is because
in each iteration, we always compute all the forces and torques
using current parameters first, and then update all parameters
with these forces and torques (e.g. Algorithm 1).

2.9. Correction of curvature

When generating the force field, we use Eq. (4) for external en-
ergy. While convolving the image with the Gaussian kernel, the lo-
cal maxima also dislocate to the concave side of a curve. Thus
when fitting the geometric shape model in the force field, the
shape will converge to the new local maxima instead of the origi-
nal curves. A similar problem in edge detection was well solved by
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Fig. 2. Examples of cubic spline contours: (a) four landmarks; (b) five landmarks; (c) six landmarks; and (d) seven landmarks.
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Bouma et al. in 2005 [18]. We now extend their method to solve
our problem by correcting the dislocation according to the local
curvature.

2.9.1. Correction for a circle
In the polar coordinate system ðq; hÞ, we define a disk with ra-

dius R as

Mðq; hÞ ¼ UðR� qÞ; ð55Þ

where Uð�Þ is the unit step. And we define its convolution with
Gaussian kernel Grðq; hÞ as

Lðq; hÞ ¼ Gr �M: ð56Þ

The derivative of Mðq; hÞ in the radial direction is simply

Mq ¼ �dðR� qÞ: ð57Þ
Then the first order derivative of Lðq; hÞ in the radial direction can
be obtained:

Lqðq; hÞ ¼ Gr �Mq ¼ �
R
r2 e�

R2þq2

2r2 I1
qR
r2


 �
; ð58Þ

where Inð�Þ is the modified Bessel function of the first kind. Now we
are interested in finding the positions of the local minima of
Lqðq; hÞ. The second order derivative can be derived from Lq [18]:

Lqqðq; hÞ ¼ e�
R2þq2

2r2 � R2

r4 I0
qR
r2


 �
þ qR

r4 þ
R

qr2


 �
I1

qR
r2


 � !
: ð59Þ

If for a radius r, we have Lqqðr; hÞ ¼ 0, then r is the dislocated radius
of the original disk Mðq; hÞ, or the circle Mqðq; hÞ, whose true radius
is R. Then r must satisfy



Fig. 3. Plot of the four sigmoid-like scaling functions. Here we set da ¼ 0:1, Da ¼ 1,
and ta ¼ 0:5.
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R
r2 I0

rR
r2


 �
¼ r

r2 þ
1
r


 �
I1

rR
r2


 �
: ð60Þ

If r and r are given, we can use this equation to solve for R. We rep-
resent the solution R as a function of r and r:

R ¼ Xðr; rÞ: ð61Þ

Now for the circle fitting problem, if the image is blurred by a
Gaussian kernel of standard deviation r, and the radius obtained
by fitting to the force field is r, then we should correct the radius
to R ¼ Xðr; rÞ.

Generally it is difficult to give an analytic expression of the
function Xð�Þ. But when r � r, we can still compute R numerically
by setting Rð0Þ ¼ r and using the iteration below:

Rðkþ1Þ ¼ r þ r2

r


 � I1
rRðkÞ

r2

� �
I0

rRðkÞ

r2

� � : ð62Þ

For the modified Bessel functions of the first kind, we know that
when x� jn2 � 1=4j; InðxÞ can be approximated by [19]

InðxÞ ¼
exffiffiffiffiffiffiffiffiffi
2px
p 1� 4n2 � 1

8x
þ ð4n2 � 1Þð4n2 � 9Þ

128x2 þ Oðx�3Þ

 �

: ð63Þ

Thus (62) can be computed using

I1ðxÞ
I0ðxÞ

� 128x2 � 48x� 15
128x2 þ 16xþ 9

: ð64Þ
2.9.2. Correction for an ellipse
For shapes other than circles, such as ellipses, it is difficult to

obtain a direct conclusion about the dislocation. Thus we still use
the conclusion for the circle, but correct for the radius of curvature
locally. For an ellipse, correction for radius of curvature at all posi-
tions is still trivial and the resulting shape is not necessarily an el-
lipse. However, we can approximately correct the semi-major axis
a and semi-minor axis b for the curvature only at h ¼ kp=2 where
k = 0,1,2,3.

Given the parametric equations x ¼ xðhÞ and y ¼ yðhÞ, the radius
of curvature can be defined as [20]

rðhÞ ¼
_x2 þ _y2
� 	3=2

_x€y� €x _y
: ð65Þ

To simplify, we assume the major axis and minor axis are parallel to
x-axis and y-axis respectively. Due to symmetry, we only need to
look at the local radius of curvature around h ¼ 0 and h ¼ p=2,
which are given as
rð0Þ ¼ b2

a
; ð66Þ

r
p
2

� �
¼ a2

b
; ð67Þ

where a and b are the semi-major axis and semi-minor axis ob-
tained by fitting the active geometric shape model iteratively. Then
the corrected semi-major axis a0 and corrected semi-minor axis b0

can be computed by

b02

a0
¼ R1 ¼ X

b2

a
;r

 !
; ð68Þ

a02

b0
¼ R2 ¼ X

a2

b
;r


 �
; ð69Þ

which results in

a0 ¼
ffiffiffiffiffiffiffiffiffiffi
R2

2R1
3
q

; ð70Þ

b0 ¼
ffiffiffiffiffiffiffiffiffiffi
R2

1R2
3
q

: ð71Þ

The same idea of only correcting for the curvature at salient points
can be also used for more complex shapes.

2.9.3. Correction for a distorted ellipse
For the distorted ellipse model with p > 1, the radii of curvature

at h ¼ 0; p=2; p and 3p=2 are

rð0Þ ¼ p2b2

a
; ð72Þ

r
p
2

� �
¼ þ1; ð73Þ

rðpÞ ¼ p2b2

a
; ð74Þ

r
3p
2


 �
¼ a2

2p�1pb
: ð75Þ

Since rð0Þ ¼ rðpÞ and rðp=2Þ is constant, we only have two con-
straints to correct three shape parameters a, b and p. Thus to correct
for curvature approximately, one method is to correct only a and b,
and keep p unchanged. Assuming the original image is blurred by a
Gaussian kernel of standard deviation r, let

R1 ¼ X
p2b2

a
;r

 !
; ð76Þ

R2 ¼ X
a2

2p�1pb
;r

 !
; ð77Þ

then the corrected a0 and b0 are

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22ðp�1ÞR1R2

2
3
q

; ð78Þ

b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�1

p3 R2
1R2

3

s
: ð79Þ
2.9.4. Correction for a cubic spline contour
For each point ðxi; yiÞ on the cubic spline contour, the distance di

to the center ðxc; ycÞ is a function of hi:

di ¼ gðhiÞ: ð80Þ

Then the radius of curvature at this point is

rðhiÞ ¼
ðg2ðhiÞ þ g02ðhiÞÞ

3
2

g2ðhiÞ þ 2g02ðhiÞ � gðhiÞg00ðhiÞ
: ð81Þ



Table 1
Ground truth parameters, and average absolute values of parameter errors using total least squares method, and active geometric shape models, respectively, over 20 datasets.
Each row of this table represents an independent line fitting experiment.

Number of noisy data points Number of outliers Ground truth parameters Total least squares fit Active geometric shape model fit

ht st jehj jesj jehj jesj

50 0 3.8675 �319.74 0.0044 0.61 0.0053 0.54
50 0 1.1458 285.29 0.0028 0.70 0.0033 0.69
50 5 4.7010 �202.84 0.0250 5.85 0.0063 1.63
50 5 5.1602 �72.03 0.0214 6.06 0.0048 1.99

100 0 0.1708 280.36 0.0032 0.66 0.0042 0.76
100 0 3.4359 �297.27 0.0032 0.51 0.0046 0.54
100 5 0.9093 311.39 0.0052 2.05 0.0024 0.47
100 5 2.9887 �216.62 0.0258 6.92 0.0085 1.95
100 10 3.2245 �265.70 0.0295 5.67 0.0060 1.45
100 10 3.6531 �315.90 0.0177 3.61 0.0049 0.64
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To approximately correct for the curvature, we only correct the
parameters Dk of the cubic spline contour. For each Dk, if
rðHkÞ > 0, we correct Dk to

D0k ¼ Dk � rðHkÞ þXðrðHkÞ;rÞ: ð82Þ

Otherwise if rðHkÞ < 0, we similarly correct Dk to

D0k ¼ Dk þ rðHkÞ �XðrðHkÞ;rÞ: ð83Þ
2.10. Optimality of fitting results

So far, we have discussed the procedures of fitting lines, circles,
ellipses, distorted ellipses and cubic spline contours to images.
These procedures are not direct solutions of minimizing an energy
function or maximizing a probability, but are designed using our
geometric understanding of the parameters of different shapes.
Defining the optimality of a shape parameter set in the image do-
main is still an open problem. To validate our method, we define
our own fitness function of a shape parameter set. For a closed con-
tour (such as a circle, ellipse, or cubic spline contour), its parameter
set P can be divided into two subsets: the size parameter set P1 and
non-size parameter set P2. For example, for an ellipse, P1 ¼
a; bf g;P2 ¼ xc; yc;/f g; for a cubic spline contour, P1 ¼
D1;D2; . . . ;DNlm

� 
, P2 ¼ xc; ycf g. Let b be a constant such that

0 < b < 1. Then the parameter set P0 ¼ ðbP1Þ [ P2 represents a
shrunken version of the shape, and P00 ¼ ð1bP1Þ [ P2 represents an
expanded version of the shape. Let ðx0i; y0iÞ denote the points on
the shrunken shape, ðx00i ; y00i Þ denote the points on the expanded
shape, N0 denote the number of points on the shrunken shape,
and N00 denote the number of points on the expanded shape. Then
we use the summation of the force field magnitude kFðx; yÞk along
these shape contours to define our fitness function:

FðPÞ ¼ 1
N

XN

i¼1

kFðxi; yiÞk �
1

2N0
XN0
i¼1

kFðx0i; y0iÞk �
1

2N00
XN00
i¼1

kFðx00i ; y00i Þk:

ð84Þ

If we choose a b close to 1, then a small value of FðPÞ indicates a
good fit to the image. If the image Iðx; yÞ is a gray-level image with
brighter regions of interest, we can also substitute kFðx; yÞk in (84)
with �Iðx; yÞ. We will show in Section 3 that our parameter updat-
ing strategies iteratively decrease the fitness function value.

Besides, the fitness function can be also used to choose the best fit
of several trials with different initial conditions. As an example, now
we explicitly give our complete ellipse fitting algorithm including
correction of curvature and fitness evaluation in Algorithm 1.

We also indicate that for each shape, the choice of forces, tor-
ques, and parameter update criteria proposed in our paper is not
the unique choice, thus is not the standard answer. How to design
and configure the active geometric shape model for a specific
shape should be left as an open problem, and depends on the prob-
lem to be solved.

Algorithm 1. The ellipse fitting algorithm.
input:image Iðx; yÞ
output:parameters xc; yc; a; b and /
begin
compute the force field Fðx; yÞ;
for i 1 to Num_Of_Trials do

randomly generate initial parameters;
for j 1 to Max_Num_Of_Iterations do

compute forces Fch; Fcv ; Fcd; Fca for xc and yc;
compute forces Fa and Fb for a and b;
compute the torque Tc for /;
update xc; yc; a; b and /;

end
compute the fitness function value F i;

end
find the minimal F i of all trials (the i�th trial);
get the resulting parameters of the i�th trial;
correct a and b for curvature;
done
3. Experiments

Before we use our models for real data analysis, where the
shape is complex, we first show some synthetic data results of
lines, ellipses and cubic spline contours (circle fitting is no more
difficult than ellipse fitting).

For line, ellipse and cubic spline contour fitting, we first gener-
ate random parameters of these shapes as ground truth, then gen-
erate data points on these shapes randomly, and add Gaussian
noise to the positions of these points. We also randomly generate
some outlier points to assess the robustness of our models. From
these noisy data points and outliers, we generate a binary image
with a black background and white foreground. Then we fit our ac-
tive geometric shape model to this image and compare the param-
eters we obtained by fitting the active geometric shape model with
the ground truth parameters. For the line fitting, we also compare
with the total least squares method.

3.1. Line fitting

In our line fitting experiments, we work on 500� 400 binary
images. In each experiment, first we generate a ground truth
parameter ht randomly between 0 and 2p, and then generate the
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Fig. 4. Line fitting result in one experiment on one dataset. The dataset consists of 50 noisy data points and five outliers. The ground truth parameters are
ht ¼ 0:9169; st ¼ 310:81, and the resulting parameters are h ¼ 0:9092; s ¼ 310:95. (a) Plot of the line fitting result together with the noisy data points and outliers and (b) force
and torque in each iteration.

Table 2
Ground truth parameters, and average absolute values of parameter errors using active geometric shape models over 20 datasets. Each row of this table represents an
independent ellipse fitting experiment.

Number of noisy data points Number of outliers Ground truth parameters Active geometric shape model fit

xc yc a b / jexc j jeyc
j jeaj jebj je/j

50 0 236.71 220.40 121.37 75.21 1.5931 0.95 0.85 0.99 1.12 0.0254
50 0 285.16 213.55 95.86 82.55 0.4986 1.01 0.96 1.37 1.16 0.0805
50 5 292.27 223.14 101.59 38.94 2.9342 1.52 0.96 1.98 1.34 0.0179
50 5 288.55 181.77 125.00 74.34 2.5404 1.05 1.00 1.69 1.41 0.0212

100 0 290.32 197.94 111.27 72.18 2.4012 0.65 0.55 0.97 0.63 0.0183
100 0 218.52 197.94 98.34 73.80 0.7966 0.79 0.67 1.01 0.86 0.0292
100 5 284.01 201.97 98.57 81.25 0.4802 0.72 0.67 0.89 0.74 0.0424
100 5 225.05 214.98 97.52 45.12 2.3622 0.97 0.95 1.17 0.65 0.0099
100 10 243.65 229.36 123.53 74.27 2.2988 0.80 0.84 0.80 0.91 0.0131
100 10 238.49 170.91 114.22 42.13 2.7380 0.98 0.57 1.45 1.44 0.0077
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ground truth parameter st such that the line passes through the
middle of the image. With the two ground truth parameters, we
generate 20 datasets. Each dataset consists of some outlier points
randomly generated in the image, and 50 or 100 data points ran-
domly generated using the ground truth parameters. Then we
add Gaussian noise with zero mean and a standard deviation of 5
to both the x and y coordinates of the data points. We generate a
binary image with a black background and white foreground for
these noisy data points and outliers. To obtain the force field, we
use (4) as the external energy where r ¼ 50, and use the solution
of (5) as our GVF force field, where we set l ¼ 0:1. Then we start
our algorithm with random initial parameters, and set
dh ¼ 0:2	; ds ¼ 0:2, and the number of iterations to 200.

To assess a line fitting algorithm, we compare the obtained
parameters h and s with the ground truth parameters ht and st .
We compute the average absolute values of the parameter errors
over the 20 datasets: jehj and jesj, where

eh ¼ h� ht; ð85Þ
es ¼ s� st : ð86Þ

We also use the total least squares method to fit a line to each
dataset. For a line defined by Eq. (7), the distance from a point
ðu;vÞ to the line is ju cos hþ v sin h� sj. For the data points and
outliers ðxi; yiÞ where i ¼ 1;2; . . . ;N, the mean of squared distances
M is defined as
M ¼ 1
N

XN

i¼1

ðxi cos hþ yi sin h� sÞ2: ð87Þ

The total least squares method that minimizes M can be obtained by
solving the 2D eigenvalue problem [21]

x2 � xx xy� xy

xy� xy y2 � yy

" #
cos h

sin h

� �
¼ k

cos h

sin h

� �
ð88Þ

and setting

s ¼ x cos hþ y sin h: ð89Þ

In Table 1 we give the ground truth parameters ht and st of each
experiment, and the average absolute values of parameter errors
over the 20 datasets using the total least squares method, and
our active geometric shape model, respectively. We also give the
plot of the force (8) and torque (10) in each iteration, and the plot
of the line together with the noisy data points and outliers in one
experiment on one dataset in Fig. 4.

As a result, we can see that the errors of the parameters using
our active geometric shape model are small; and are notably much
smaller than those using the total least squares method in the
presence of outliers. Thus our active geometric shape model is
shown to be effective, accurate, and robust to outliers for the line
fitting problem, and is therefore promising for more complicated
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Fig. 5. Ellipse fitting result in one experiment on one dataset. The dataset consists of 50 noisy data points and five outliers. The ground truth parameters are
xct ¼ 282:41; yct ¼ 165:22; at ¼ 114:64; bt ¼ 58:14;/t ¼ 2:3179, and the resulting parameters are xc ¼ 282:60; yc ¼ 165:20; a ¼ 113:58; b ¼ 57:37;/ ¼ 2:3073. (a) Plot of the
ellipse fitting result together with the noisy data points and outliers; (b) forces on a and b in each iteration (first stage); (c) torque on / in each iteration (first stage); and (d)
value of fitness function in each iteration (first stage, b ¼ 0:9).

1 This algorithm is currently implemented in MATLAB, and the running time should
be significantly improved by recoding in C/C++.

Q. Wang, K.L. Boyer / Computer Vision and Image Understanding 116 (2012) 1178–1194 1187
shapes for which computing the total least squares would be
difficult.

3.2. Ellipse fitting

In our ellipse fitting experiments, we still work on 500� 400
binary images. In each experiment, the ground truth parameter
/t is generated randomly between 0 and p, and xct ; yct ; at , and bt

are all randomly generated within a wide range. 20 datasets are
generated for each experiment. Each dataset includes 50 or 100
data points randomly generated using the ground truth parame-
ters, and Gaussian noise with zero mean and a standard deviation
of 5 is added to both x and y coordinates of these data points. Out-
lier points are also added into these datasets. After generating the
black and white image using one dataset, we apply a two-stage el-
lipse fitting method. In the first stage, we blur the original image
using a Gaussian kernel with a large standard deviation r ¼ 20
and generate the GVF force field. Then we fit an ellipse to this force
field using random initial parameters. In the second stage, we blur
the original image using a Gaussian kernel with a small standard
deviation r ¼ 5 and generate the GVF force field. Then we fit an el-
lipse again to this force field using the results obtained from the
first stage as our initial parameters. By using a large r in the first
stage, the force field has a sufficiently large capture range to locate
the ellipse to the rough position. In the second stage, with a small
r, the ellipse will fit to a more accurate position. This two-stage ap-
proach can be used as a standard practice for active geometric
shape models. Then we correct a and b using (62). In both stages,
we set d/ ¼ 0:2	 and dxc ¼ dyc ¼ da ¼ db ¼ 0:2. The number of iter-
ations is set to 300 in the first stage and 50 in the second stage.

In these 20 experiments, the average running time of our two-
stage ellipse fitting algorithm on a 2.53 GHz Intel Core i5 machine
is 10.51 s, with standard deviation 1.04 s.1

We still use the average absolute values of parameter errors to
assess our ellipse fitting results. The ground truth parameters and
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Fig. 6. Cubic spline contour fitting results and fitness function values in each iteration (first stage). Each experiment uses 100 noisy data points and five outliers. (a) and (b)
NðdataÞ

lm ¼ 5; NðmodelÞ
lm ¼ 5; (c) and (d) NðdataÞ

lm ¼ 6; NðmodelÞ
lm ¼ 6; (e) and (f) NðdataÞ
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lm ¼ 8; NðmodelÞ
lm ¼ 8; (i) and (j) NðdataÞ

lm ¼ 4; NðmodelÞ
lm ¼ 6; (k) and (l)

NðdataÞ
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lm ¼ 7; (m) and (n) NðdataÞ
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lm ¼ 8; and (o) and (p) NðdataÞ
lm ¼ 6; NðmodelÞ

lm ¼ 4.
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Fig. 6. (continued)
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average absolute values of parameter errors over the 20 datasets in
each experiment are given in Table 2. The plot of the resulting el-
lipse together with the noisy data points and outliers, and the plot
of the forces (27) and (28), torque (34) and fitness function (84)
with b ¼ 0:9 in each iteration in one experiment on one dataset
are given in Fig. 5. We can see that the value of the fitness function
decreases in each parameter updating iteration, and that the errors
of parameters obtained by our active geometric shape model are
small even when there are outliers, which again demonstrates
the effectiveness, accuracy and robustness of our method.
3.3. Cubic spline contour fitting

In our cubic spline contour fitting experiments we use similar
settings with the ellipse fitting experiments: 500� 400 binary
images, randomly generated parameters, and two-stage fitting. In
each experiment, 100 noisy data points and five outliers are gener-
ated for a cubic spline contour with NðdataÞ

lm landmarks. Then a cubic
spline contour model with NðmodelÞ

lm landmarks is used to fit the data
for 10 times, each time with different randomly generated initial
parameters. The resulting parameter set with smallest fitness func-
tion value is the final result. We report the results using different
NðdataÞ

lm and NðmodelÞ
lm in Fig. 6. We can see that when

NðmodelÞ
lm P NðdataÞ

lm , our model is powerful enough to represent the
shape. But if NðmodelÞ

lm < NðdataÞ
lm (Fig. 6o and p), the results can be

unsatisfactory due to under-modeling, as is expected.
4. Automatic detection and segmentation of CSF

Detection and segmentation of cerebrospinal fluid (CSF) flow in
CSF phase-contrast magnetic resonance (PC-MR) images are signif-
icant for the study of CSF dynamics, such as estimating the flow
rate and wall shear stress [22]. Since the shape of the CSF structure
has no salient points, the active shape models, which rely on a
large amount of training data and manual labeling, are not suitable
for this problem. However, by representing the shape using a dis-
torted ellipse proposed in Section 2.6, our active geometric shape
model is very good at detecting the CSF structure in noisy images,
while strictly constraining the shape of the model at each iteration
(Fig. 7d).



Fig. 7. (a) The correlation map of the CSF image sequence shown in Fig. 8; (b) the distorted ellipse fitting result on the correlation map; (c) a zoom-in view of the distorted
ellipse fitting result; (d) intermediate shapes in the distorted ellipse fitting process; (e) the manual segmentation (ground truth) of the CSF structure; and (f) the graph cuts
segmentation of the CSF structure.
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The description of the data and the method to generate a corre-
lation map from the original image sequence is provided in Appen-
dix A. Here we focus on our distorted ellipse fitting procedures, and
how to use the active geometric shape model fitting results to gen-
erate a CSF segmentation.

4.1. Detecting the CSF structure

Example in vivo CSF PC-MR magnitude images are shown in
Fig. 8. The correlation map of the CSF image sequence obtained
by using (A.2) and (A.5) is displayed in Fig. 7a. We can see that
the contrast is low and non-uniform around the CSF structure,
which is located below the center of the correlation map. One solu-
tion for such defects in the image is to reduce the variation of the
magnitude of the force field at different locations. We can rescale
the magnitude with some monotonically non-decreasing function
such as the power function. Here we simply normalize the force
field vectors so that the magnitude is constant everywhere. By
restricting the range of the distorted ellipse shape parameters a,
b, and p according to medical knowledge, we can generate some
random guess of these parameters as initial shape parameters. If
information of the imaging procedure (such as posture) is pro-
vided, we are also able to generate some rough guess of the posi-
tion parameters xc and yc as the initial position, which should be
close to the true values. Otherwise, we can require a one-click in-
put from the user for the initial position on the image; or we can fit
the model many times using different randomly generated initial
positions, and use the fitness function to select a best fit. Here
we adopt the latter approach. For a distorted ellipse, the size
parameter set is P1 ¼ a; bf g, and the non-size parameter set is



Fig. 8. Example in vivo CSF PC-MR magnitude images of one case. (a) Frame 0; (b) frame 4; (c) frame 8; (d) frame 12; (e) frame 16; and (f) frame 20.

Fig. 9. Distorted ellipse fitting results and graph cuts segmentation results on two cases. Each row is one case. The first column is the correlation map; the second column is
the distorted ellipse fitting result; the third column is the ground truth; and the last column is the graph cuts segmentation.
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P2 ¼ xc; yc; pf g. Similar to Eq. (84), the fitness function of the dis-
torted ellipse model in the correlation map Cðx; yÞ is

FðPÞ ¼ � 1
N

XN

i¼1

Cðxi; yiÞ þ
1

2N0
XN0
i¼1

Cðx0i; y0iÞ þ
1

2N00
XN00
i¼1

Cðx00i ; y00i Þ: ð90Þ

We consider a fit to be good if the value of this fitness function is
small. Now we use the normalized GVF as our force field, use 50
randomly generated positions as the initial positions, set b ¼ 0:8,
use (90) to select the best fit, and set dxc ¼ dyc ¼ 0:2; da ¼
db ¼ 0:2, dp ¼ 0:002.

Our resulting parameters of fitting the distorted ellipse model
to the correlation map of the case shown in Figs. 7 and 8 are
xc ¼ 158:37; yc ¼ 93:67, a ¼ 14:00; b ¼ 5:60 and p ¼ 1:716. The
fitting result of the above case is displayed in Fig. 7b and c. Fitting
results of another two cases are shown in Fig. 9b and f.

For comparison, we have also tried to detect the CSF structure in
the correlation map using active contours [23]. The results of three
cases are shown in Fig. 10. In each case, we randomly initialize 40
active contours, and let them evolve in the correlation map. Some
contours will evolve partly beyond the image border; and some
contours with bad initialization will shrink to a single point and
disappear. This is why some contours in Fig. 10 are not closed,
and the number of contours is less than 40. Generally, we can
see that the active contours fail to converge accurately to the CSF
structure. This is because active contours contain no prior knowl-



Fig. 10. Comparison: fitting active contours to the correlation maps shown in (a) Fig. 7a; (b) Fig. 9a and (c) Fig. 9e.
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edge of a geometrical model. Besides, there is more than one bright
region in the correlation map, and there is not a good criterion to
select a best fit from all resulting contours.

4.2. Segmentation of the CSF structure

Now we need to segment the correlation map to two regions:
the CSF structure and the background. Once we find a distorted el-
lipse fit in the correlation map, we can claim the pixels on the dis-
torted ellipse contour to belong to the CSF structure. Besides, with
a well chosen 0 < b0 < 1, P0 ¼ ðb0P1Þ [ P2 and P00 ¼ ð1

b0 P1Þ [ P2 rep-
resent a shrunken distorted ellipse and an expanded distorted el-
lipse respectively (see Section 2.10 for details), and we can also
claim the pixels inside the shrunken distorted ellipse and outside
the expanded distorted ellipse to belong to the background. Now
the problem is to decide which region should the remaining pixels
belong to. Boykov’s s–t graph cuts algorithm provides a good solu-
tion to this problem [24]. The above mentioned pre-segmented
pixels are used to construct the hard constraints (seed points) of
the graph. Besides, to calculate the regional energy terms of the
graph, the intensity distribution of each region is obtained by
approximating the histograms of the two pre-segmented regions
with Gaussian mixture models using EM algorithm. For each re-
gion, a Gaussian mixture model with three components is used.
The relative importance of the regional energy term is set to
k ¼ 0:2, the camera noise of the boundary energy term is set to
r ¼ 5, and b0 is set to 0.65. Details of the s–t graph cuts algorithm
can be found in [24].

The graph cuts segmentation results of the CSF structures are
shown in Figs. 7 and 9 together with the manual segmentations.
Using the manual segmentation as the ground truth, our graph cuts
segmentation achieves an average Dice similarity coefficient (DSC)
of lDSC ¼ 86:37% on our dataset, while the standard deviation of
the DSC is rDSC ¼ 3:70%. Note that we did not use any of the man-
ual annotations for training (actually there is no training stage),
thus this performance is already very satisfactory. Besides, since
neither of the detection algorithm or the segmentation algorithm
requires any manual input or labeling, our CSF detection–segmen-
tation framework is completely automatic.
5. Discussion

Our active geometric shape model (AGSM) is a powerful ap-
proach to fit a geometric shape to image. Once we are able to rep-
resent the shape with parametric equations, we can associate the
shape parameters with forces and torques defined as integrals of
a force field along the shape. We have illustrated the accuracy
and robustness of our model by fitting lines, ellipses and cubic
spline contours on synthetic data. We also developed a distorted
ellipse model to describe the shape of the CSF structure. This model
provides an approach to detect the CSF structures in the PC-MR im-
age sequences, and the s–t graph cuts algorithm based on the
detection result is used to segment the CSF structure.

Unlike ASMs [1], our model does not require any manual anno-
tation of landmark points of the shape. Since our active geometric
shape model internally has the shape prior, and has a well defined
fitness function coming with it, no training is needed for our meth-
od. Prior knowledge can be also added by constraining the range,
ratio, or updating step of the shape parameters. We have also tried
active contours [23] to detect the CSF structure in the correlation
map. However, without prior knowledge, the active contours do
not converge to the CSF structure robustly, since there is more than
one bright region in the correlation map, and the CSF structure ap-
pears to be disconnected in the correlation map.

Although our work is mainly inspired by the CSF detection and
segmentation problem [22], there are many other promising appli-
cations of the active geometric shape model, such as cell segmen-
tation and tracking [25–28], 3D vessel extraction by fitting closed
contours to cross-section planes [29], and photographic composi-
tion analysis [30–32]. Besides, in our CSF detection and segmenta-
tion problem, the shape parameters obtained by fitting the
distorted ellipse model to the correlation map are promising fea-
tures for the detection of pathologies such as hydrocephalus. An-
other future work is to generalize the active geometric shape
model to the 3D space, such as models for spheres, ellipsoids and
other closed surfaces.
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Appendix A. Correlation map

One case of in vivo CSF PC-MR image sequence consists of N
magnitude images, which reveal the anatomy of the brain section,
and N corresponding phase images. N can be 26 or 32, which differs
between different image sequences. In those cases where N ¼ 26,
the pixel spacing is 0.52 mm, and the image size is 320� 270; in
the other cases where N ¼ 32, the pixel spacing is 0.55 mm, and
the image size is 256� 256. Both magnitude images and phase
images are 16-bit gray-level images. The frames of each image se-
quence are uniformly sampled over one cardiac cycle.

Since the cardiac cycle can be expected to approximate a sinu-
soid, we compute the correlation of the pixel intensity at each po-
sition in the magnitude image sequence with a sine function
(reference function), and use this correlation map for further anal-
ysis. Now the number of images in one cardiac cycle is N, the ref-
erence function at frame k with phase w is
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sin
2kp

N
þ w


 �
: ðA:1Þ

Assume the original image sequence is denoted as Ikðx; yÞ, where
ðx; yÞ is the position and k is the frame number. Then the correlation
function of the image sequence at ðx; yÞ with a reference function of
phase w is

Cðx; y; wÞ ¼
PN

k¼1 Ikðx; yÞ � Iðx; yÞ
� 	

sinð2kp
N þ wÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

k¼1 sinð2kp
N þ wÞ

� 	2
q ; ðA:2Þ

where Iðx; yÞ is the mean of pixel intensities at ðx; yÞ in the cycle.
Note that here the correlation function is not normalized, so back-
ground noise that may also be highly correlated with a sine func-
tion, but with low amplitude, will be weak. To obtain the final
correlation map, we need to choose a phase w at each point. Thus
we can define the phase as a function of the position, denoted
wðx; yÞ. Since the phase inside the CSF flow is expected to be contin-
uous and smooth, we expect the magnitude of the spatial deriva-
tives of wðx; yÞ to be small and the correlation map Cðx; y; wðx; yÞÞ
to be large at the same time. This can be formulated as an optimi-
zation problem:

min
wðx; yÞ

ZZ
mðw2

x þ w2
yÞ � Cðx; y; wÞ

� �
dx dy; ðA:3Þ

where wx and wy are the first order partial derivatives of wðx; yÞwith
respect to x and y respectively, and m is a scaling parameter. By
using calculus of variations [33], the phase wðx; yÞ can be obtained
by solving the Euler–Lagrange equation:

@Cðx; y; wÞ
@w

þ 2mr2w ¼ 0: ðA:4Þ

The Euler–Lagrange equation can be solved using a simple numeri-
cal method:

wmþ1ðx; yÞ ¼ wmðx; yÞ þ @C
@w
þ 2mr2wm


 �
; ðA:5Þ

where m is the iteration number. The resulting correlation maps
with m ¼ 0:01 are shown in Figs. 7a and 9a and e.
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