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(57) ABSTRACT 

Methods and systems for automatic classi?cation of images 
of internal structures of human and animal bodies. A method 
includes receiving a magnetic resonance (MR) image testing 
model and determining a testing volume of the testing model 
that includes areas of the testing model to be classi?ed as bone 
or cartilage. The method includes modifying the testing 
model so that the testing volume corresponds to a mean shape 
and a shape variation space of an active shape model and 
producing an initial classi?cation of the testing volume by 
?tting the testing volume to the mean shape and the shape 
variation space. The method includes producing a re?ned 
classi?cation of the testing volume into bone areas and carti 
lage areas by re?ning the boundaries of the testing volume 
with respect to the active shape model and segmenting the 
MR image testing model into different areas corresponding to 

6, 2012. bone areas and cartilage areas. 
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AUTOMATIC SPATIAL CONTEXT BASED 
MULTI-OBJECT SEGMENTATION IN 3D 

IMAGES 

CROSS-REFERENCE TO RELATED 
APPLICATION 

[0001] This application claims the bene?t of the ?ling date 
of US. Provisional Patent Application 61/734,280, ?led Dec. 
6, 2012, which is hereby incorporated by reference. 

TECHNICAL FIELD 

[0002] The present disclosure is directed, in general, to 
computer-aided imaging and image analysis systems, and 
similar systems, including but not limited to magnetic reso 
nance imaging (MRI), nuclear magnetic resonance imaging 
(NMRI), and magnetic resonance tomography (MRT) sys 
tems (collectively and non-exclusively, “imaging systems”). 

BACKGROUND OF THE DISCLOSURE 

[0003] Imaging systems can produce, store, manipulate, 
and analyze images, including images of internal structures of 
human and animal bodies. Improved systems are desirable. 

SUMMARY OF THE DISCLOSURE 

[0004] Various disclosed embodiments include methods 
and systems for automatic classi?cation of images of internal 
structures of human and animal bodies. A method includes 
receiving magnetic resonance (MR) image testing model and 
determining a testing volume of the testing model that 
includes areas of the testing model to be classi?ed as bone or 
cartilage. The method includes modifying the testing model 
so that the testing volume corresponds to a mean shape and a 
shape variation space of an active shape model and producing 
an initial classi?cation of the testing volume by ?tting the 
testing volume to the mean shape and the shape variation 
space. The method includes producing a re?ned classi?cation 
of the testing volume into bone areas and cartilage areas by 
re?ning the boundaries of the testing volume with respect to 
the active shape model. The method can include storing the 
re?ned classi?cation as classi?cation data associated with the 
MR image testing model. The method includes segmenting 
the MR image testing model into different areas correspond 
ing to bone areas and cartilage areas according to the re?ned 
classi?cation. 

[0005] Another method for classifying bone and cartilage 
in a magnetic resonance image includes receiving an MR 
image testing model, the testing model including unclassi?ed 
bone and cartilage portions represented by a plurality of vox 
els. The method includes performing a ?rst classi?cation 
process, by the data processing system, using ?rst pass ran 
dom forest classi?ers to produce a ?rst pass probability map 
that classi?es each voxel of the testing model as one of femo 
ral cartilage, tibial cartilage, patellar cartilage, or back 
ground. The method includes performing a second classi? 
cation process, by the data processing system, using second 
pass random forest classi?ers to produce a second pass prob 
ability map that classi?es each voxel of the ?rst pass prob 
ability map as one of femoral cartilage, tibial cartilage, patel 
lar cartilage, or background. The method includes storing 
classi?cation data in the data processing system, correspond 
ing to the second pass probability map, as associated with the 
MR image testing model. The method includes displaying the 
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MR image testing model including indicating portions of the 
MR image testing model corresponding to the classi?cation 
of each voxel. 
[0006] The foregoing has outlined rather broadly the fea 
tures and technical advantages of the present disclosure so 
that those skilled in the art may better understand the detailed 
description that follows. Additional features and advantages 
of the disclosure will be described hereinafter that form the 
subject of the claims. Those skilled in the art will appreciate 
that they may readily use the conception and the speci?c 
embodiment disclosed as a basis for modifying or designing 
other structures for carrying out the same purposes of the 
present disclosure. Those skilled in the art will also realize 
that such equivalent constructions do not depart from the 
spirit and scope of the disclosure in its broadest form. 
[0007] Before undertaking the DETAILED DESCRIP 
TION below, it may be advantageous to set forth de?nitions 
of certain words or phrases used throughout this patent docu 
ment: the terms “include” and “comprise,” as well as deriva 
tives thereof, mean inclusion without limitation; the term “or” 
is inclusive, meaning and/or; the phrases “associated with” 
and “associated therewith,” as well as derivatives thereof, 
may mean to include, be included within, interconnect with, 
contain, be contained within, connect to or with, couple to or 
with, be communicable with, cooperate with, interleave, jux 
tapose, be proximate to, be bound to or with, have, have a 
property of, or the like; and the term “controller” means any 
device, system or part thereof that controls at least one opera 
tion, whether such a device is implemented in hardware, 
?rmware, software, or some combination of at least two of the 
same. It should be noted that the functionality associated with 
any particular controller may be centralized or distributed, 
whether locally or remotely. De?nitions for certain words and 
phrases are provided throughout this patent document, and 
those of ordinary skill in the art will understand that such 
de?nitions apply in many, if not most, instances to prior as 
well as future uses of such de?ned words and phrases. While 
some terms may include a wide variety of embodiments, the 
appended claims may expressly limit these terms to speci?c 
embodiments. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0008] For a more complete understanding of the present 
disclosure, and the advantages thereof, reference is now made 
to the following descriptions taken in conjunction with the 
accompanying drawings, wherein like numbers designate 
like objects, and in which: 
[0009] FIG. 1 illustrates a block diagram of a data process 
ing system in which an embodiment can be implemented; 
[0010] FIG. 2 illustrates an exemplary knee joint; 
[0011] FIG. 3 illustrates a line-drawing representation of an 
MR image of an exemplary knee joint; 
[0012] FIG. 4 illustrates a ?owchart of an exemplary pro 
cess for bone segmentation in accordance with disclosed 
embodiments; 
[0013] FIG. 5 illustrates a bone segmentation process in 
accordance with disclosed embodiments; and 
[0014] FIG. 6 illustrates a two-pass iterative classi?cation 
framework in accordance with disclosed embodiments. 

DETAILED DESCRIPTION 

[0015] FIGS. 1 through 6 and the various embodiments 
used to describe the principles of the present disclosure in this 
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patent document are by way of illustration only and should 
not be construed in any way to limit the scope of the disclo 
sure. Those skilled in the art will understand that the prin 
ciples of the present disclosure may be implemented in any 
suitably arranged device. The numerous innovative teachings 
of the present application will be described with reference to 
exemplary non-limiting embodiments. 
[0016] Disclosed embodiments include improved imaging 
systems and methods for recognizing, analyZing, and classi 
fying images and the elements represented by the images, 
including but not limited to imaging systems and methods for 
classifying and “segmenting” cartilage structures in the 
human knee and in other human and animal images. While 
speci?c embodiments are described below in terms of human 
knee structures, those of skill in the art will recognize that the 
techniques and embodiments illustrated herein can be applied 
to other anatomical images such as of the hip, elbow, shoul 
der, wrist, and others, and can be applied to other images 
including but not limited to bone/ cartilage images such as CT 
scans and other 2D and 3D images. 
[0017] The automatic segmentation of human knee carti 
lage from 3D MR images is a useful yet challenging task due 
to the thin sheet structure of the cartilage with diffuse bound 
aries and inhomogeneous intensities. 
[0018] Disclosed embodiments include an iterative multi 
class learning method to segment the femoral, tibial, and 
patellar cartilage simultaneously, and can effectively exploit 
the spatial contextual constraints between bone and cartilage 
and also between different cartilages. 
[0019] Based on the fact that the cartilage grows in only 
certain areas of the corresponding bone surface, the system 
can extract the distance features of not only the distance to the 
surface of the bone, but more inforrnatively, of the distance to 
the densely registered anatomical landmarks on the bone 
surface. 
[0020] The system can also or alternatively use a set of 
iterative discriminative classi?ers such that, at each iteration, 
probability comparison features are constructed from the 
class con?dence maps derived by previously learned classi 
?ers. These features automatically embed the semantic con 
text information between different cartilages of interest. 
[0021] Disclosed embodiments include a fully automatic, 
highly accurate and robust segmentation method for knee 
cartilage in 3D MR images. This method is leaming-based 
and effectively exploits the spatial constraints between the 
bone and cartilage, as well as the constraints between differ 
ent cartilages. In particular, the distance features from a large 
number of anatomical landmarks densely registered on the 
surface of the corresponding bones, as well as the iterative 
discriminative classi?cation with probability comparison 
features are new and unique compared to the prior art in this 
?eld. 
[0022] Although motivated by the problem of cartilage seg 
mentation in MRI images, the proposed method can be 
applied to general segmentation problems of different objects 
in medical and other images of different modalities (includ 
ing but not limited to such areas as ground penetrating radar, 
X-Ray imaging of structures, parcels, and containers, milli 
meter-wave imaging, and others) to effectively exploit the 
spatial semantic information and contextual constraints for 
boosting the segmentation performance. 
[0023] Cartilages are not clearly visible as MRI images in 
general. However, the spatial contextual constraints between 
bones and cartilages, which are learned by the disclosed 
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method, can be used to construct statistic models of the bones 
and cartilages jointly. Accordingly, it can be more accurate 
than estimating the cartilages with such prior models based 
on the bones, which can be more easily segmented from the 
CT images. After segmentation or classi?cation as described 
herein, the classi?cation data and segmented images can be 
merged with CT, X-Ray, or other images for a more compre 
hensive view of the subject area. 
[0024] FIG. 1 illustrates a block diagram of a data process 
ing system in which an embodiment can be implemented, for 
example, as an imaging system particularly con?gured by 
software or otherwise to perform the processes as described 
herein, and in particular as each one of a plurality of inter 
connected and communicating systems as described herein. 
The data processing system depicted includes a processor 102 
connected to a level two cache/bridge 104, which is con 
nected in turn to a local system bus 106. Local system bus 106 
may be, for example, a peripheral component interconnect 
(PCI) architecture bus. Also connected to local system bus 
106 in the illustrated example are a main memory 108 and a 
graphics adapter 110. The graphics adapter 110 may be con 
nected to display 111. 
[0025] Other peripherals, such as local area network 
(LAN)/Wide Area Network/Wireless (e.g. WiFi) adapter 112, 
may also be connected to local system bus 106. Expansion 
bus interface 114 connects local system bus 106 to input/ 
output (l/O) bus 116. 1/0 bus 116 is connected to keyboard/ 
mouse adapter 118, disk controller 120, and 1/0 adapter 122. 
Disk controller 120 can be connected to a storage 126, which 
can be any suitable machine usable or machine readable 
storage medium, including but not limited to nonvolatile, 
hard-coded type mediums such as read only memories 
(ROMs) or erasable, electrically programmable read only 
memories (EEPROMs), magnetic tape storage, and user-re 
cordable type mediums such as ?oppy disks, hard disk drives 
and compact disk read only memories (CD-ROMs) or digital 
versatile disks (DVDs), and other known optical, electrical, or 
magnetic storage devices. 
[0026] Also connected to 1/0 bus 116 in the example illus 
trated is audio adapter 124, to which speakers (not shown) 
may be connected for playing sounds. Keyboard/mouse 
adapter 118 provides a connection for a pointing device (not 
shown), such as a mouse, trackball, trackpointer, etc. 
[0027] 1/0 adapter 122 can be connected, for example, to 
imaging equipment 128, which can include any known imag 
ing system hardware con?gured to perform processes as 
described herein, and can speci?cally include MRI, NMRI, 
and MRT equipment as known to those of skill in the art, as 
well as other imaging equipment. 
[0028] Those of ordinary skill in the art will appreciate that 
the hardware illustrated in FIG. 1 may vary for particular 
implementations. For example, other peripheral devices, such 
as an optical disk drive and the like, also may be used in 
addition to or in place of the hardware illustrated. The illus 
trated example is provided for the purpose of explanation 
only and is not meant to imply architectural limitations with 
respect to the present disclosure. 
[0029] A data processing system or imaging system in 
accordance with an embodiment of the present disclosure 
includes an operating system employing a graphical user 
interface. The operating system permits multiple display win 
dows to be presented in the graphical user interface simulta 
neously, with each display window providing an interface to 
a different application or to a different instance of the same 
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application. A cursor in the graphical user interface may be 
manipulated by a user through the pointing device. The posi 
tion of the cursor may be changed and/or an event, such as 
clicking a mouse button, generated to actuate a desired 
response. 
[0030] One of various commercial operating systems, such 
as a version of Microsoft WindowsTM, a product of Microsoft 
Corporation located in Redmond, Wash. may be employed if 
suitably modi?ed. The operating system is modi?ed or cre 
ated in accordance with the present disclosure as described. 
[0031] LAN/WAN/Wireless adapter 112 can be connected 
to a network 130 (not a part of data processing system 100), 
which can be any public or private data processing system 
network or combination of networks, as known to those of 
skill in the art, including the Internet. Data processing system 
100 can communicate over network 130 with server system 
140, which is also not part of data processing system 100, but 
can be implemented, for example, as a separate data process 
ing system 100. 
[0032] MRI provides direct and noninvasive visualization 
of the whole knee joint including the soft cartilage tissues. In 
many cases, researchers are interested in segmenting the three 
different cartilages in the human knee joint: the femoral car 
tilage, the tibial cartilage, and the patellar cartilage. These 
cartilages are attached to the femur, tibia, and patella, respec 
tively. Speci?cally, unlike the femoral cartilage and the patel 
lar cartilage, which are one-piece structures, the tibial carti 
lage consists of two separated pieces: the lateral tibial 
cartilage and the medial tibial cartilage. 
[0033] Since knee cartilages are very thin structures and are 
attached to speci?c surface locations of the three knee bones, 
researchers prefer to segment the knee bones ?rst and incor 
porate the prior knowledge of the bones into the cartilage 
segmentation procedure. 
[0034] FIG. 2 illustrates an exemplary knee joint, including 
femur 202, femoral cartilage 204, tibia 206, tibial cartilage 
208, patella 210, and patellar cartilage 212. Menisci and 
muscles are omitted from this ?gure for clarity. 
[0035] Automatic segmentation of the cartilage tissues 
from MR images, which is required for accurate and repro 
ducible quantitative cartilage measures, is dif?cult or impos 
sible in current systems because of the inhomogeneity, small 
size, low tissue contrast, and shape irregularity of the carti 
lage. 
[0036] FIG. 3 illustrates a line-drawing representation of an 
MR image of an exemplary knee joint, including femur 302, 
tibia 306, patella 310, and areas of cartilage 314. 
[0037] Disclosed embodiments include a fully automatic 
leaming-based voxel classi?cation method for cartilage seg 
mentation. Disclosed techniques include pre-segmentation of 
corresponding bones in the knee joint, but does not rely on 
explicit classi?cation of the bone-cartilage interface (BCI). 
[0038] Instead, disclosed embodiments construct distance 
features from each voxel to a large number of anatomical 
landmarks on the surface of the bones to capture the spatial 
relation between the cartilages and bones. Since BCI extrac 
tion is not required, the whole framework is simpli?ed and 
classi?cation error propagation can be avoided. Disclosed 
embodiments can construct multi-pass feature-boosting for 
ests and use the distance to dense landmark features, as 
described in more detail below. 

[0039] The forests used herein can be implemented as ran 
dom forests, as known to those of skill in the art. Such a 
random forest, as used herein, is an ensemble classi?er that 
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consists of many decision trees and outputs the class that is 
the mode of the classes output by individual trees. In general, 
each tree is constructed using by letting the number of train 
ing cases be N and the number of variables in the classi?er be 
M. The number m represents the number of input variables to 
be used to determine the decision at a node of the tree; m 
shouldbe much less than M. The system chooses a training set 
for this tree by choosing n times with replacement from all N 
available training cases (i.e., take a bootstrap sample). The 
system uses the rest of the cases to estimate the error of the 
tree, by predicting their classes. For each node of the tree, the 
system randomly chooses m variables on which to base the 
decision at that node. The system calculates the best split 
based on these m variables in the training set. Each tree is 
fully “grown” and not pruned (as may be done in constructing 
a normal tree classi?er). General discussion of such random 
forests can be found, at the time of ?ling, at en.wikipedia.org/ 
wiki/Random_forest, and in Leo Breiman, Random Forests, 
Machine Learning 45, No. l (2001): 5-32, both of which are 
hereby incorporated by reference. For example, Breiman 
describes that random forests are a combination of tree pre 
dictors such that each tree depends on the values of a random 
vector sampled independently and with the same distribution 
for all trees in the forest. 

[0040] Besides the connection between the cartilages and 
bones, strong spatial relation also exists among different car 
tilages, which is more often overlooked in other approaches. 
For example, the femoral cartilage is always above the tibial 
cartilage and two cartilages touch each other in the region 
where two bones slide over each other during joint move 
ments. 

[0041] To utilize this constraint, using auto-context tech 
niques, disclosed embodiments implement an iterative dis 
criminative classi?cation so that, at each iteration, the multi 
class probability maps obtained by previous classi?ers are 
used to extract semantic context features. In particular, the 
system can compare the probabilities at positions with ran 
dom shifts and compute the difference. These features, 
referred to herein as the random shift probability difference 
(RSPD) features, are more computationally e?icient and 
more ?exible for a different range of contexts compared to the 
calculation of probability statistics at ?xed relative positions 
according to other techniques. 
[0042] Joint classi?cation and regression random forests 
can be used to solve multiple organ segmentation problems. 
Regression can be used to predict and estimate the organ 
boundary maps. In other methods, the output organ boundary 
maps are informative, but still not highly accurate based on 
regressed values. 

[0043] Disclosed embodiments, however, attempt to seg 
ment very thin layer structured objects as cartilage, so that 
there is not much variation in regression values. Instead, the 
distance information as spatial prior are encoded for super 
vised classi?cation, which is more effective to learn with high 
accuracy and repeatability. The spatial prior, in this context, is 
the prior spatial relationship between the multiple objects, 
more speci?cally between the cartilages and bones. 

[0044] FIG. 4 illustrates a ?owchart of an exemplary pro 
cess for bone segmentation performed by one or more data 
processing systems (individually and collectively referred to 
as the “system”) such as described herein. Various steps 
described brie?y with respect to this ?gure are described in 
more detail below. 
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[0045] In some embodiments, to segment the three knee 
bones in 3D MR images, the system can ?rst receive a set of 
MR image training volumes with manually annotated bone 
structures, referred to as the “ground trut ” bones or images 
since the classi?cations of bones, cartilage, and other struc 
tures is known (step 405). The system can convert the ground 
truth images to meshes and perform a point-set registration 
using the coherent point drift (CPD) method to produce cor 
respondence meshes (step 410). In some cases, a CPD 
method can be used as described in A. Myronenko and X. 
Song, Point Set Registration: Coherent Point Drift, IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 
32(12):2262-2275, December 2010, hereby incorporated by 
reference. 

[0046] For example, as described by Myronenko, point set 
registration is a key component in many computer vision 
tasks. The goal of point set registration is to assign correspon 
dences between two sets of points and to recover the trans 
formation that maps one point set to the other. Multiple fac 
tors, including an unknown nonrigid spatial transformation, 
large dimensionality of point set, noise, and outliers, can be 
addressed by the CPD method for both rigid and nonrigid 
point set registration. Such a method considers the alignment 
of two point sets as a probability density estimation problem 
and ?ts the Gaussian mixture model (GMM) centroids (rep 
resenting the ?rst point set) to the data (the second point set) 
by maximizing the likelihood. The system can force the 
GMM centroids to move coherently as a group to preserve the 
topological structure of the point sets. In the rigid case, the 
system can impose the coherence constraint by reparameter 
ization of GMM centroid locations with rigid parameters and 
derive a closed form solution of the maximization step of the 
Expectation Maximization algorithm in arbitrary dimen 
sions. In the nonrigid case, the system can impose the coher 
ence constraint by regulariZing the displacement ?eld and 
using the variational calculus to derive the optimal transfor 
mation. 

[0047] The system can then train and build principal com 
ponent analysis (PCA) models for all the correspondence 
meshes (step 415). These PCA models are statistical shape 
models which capture the mean and variation of obj ect shapes 
represented by the correspondence meshes. The PCA models 
are built from a set of training data/volumes and can then be 
applied to the testing data/volumes for the purpose of seg 
mentation. 

[0048] The system can then combine the PCA models to 
produce an active shape model (ASM) that includes a mean 
shape, which corresponds to the average shapes of the bones 
and cartilage of the training volumes, and a shape variation 
space, which corresponds to the variation in placement of the 
bones and cartilage of the training volumes. The system can 
then ?t these ASMs to images to determine the initial seg 
mentation of the three knee bones (step 420), though a seg 
mentation by this initial ?tting of ASMs is generally not 
accurate. 

[0049] An ASM technique is described in T. Coots, C. 
Taylor, D. Cooper, and J. Graham, Active Shape Modelsi 
Their Training andApplication, Computer Vision and Image 
Understanding, 61(1):38-59, 1995, hereby incorporated by 
reference. For example, Coots describes a method for build 
ing models by learning patters of variability form a training 
set of correctly annotated images. These ASMs can be used 
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for image search in an iterative re?nement algorithm, while 
only deforming the ASMs in ways consistent with the training 
set. 

[0050] The system can then morphologically erode the 
mask to generate positive seeds of the bone, dilate the mask to 
generate negative seeds of the bone, and perform a random 
walks process to get re?ned bone segmentation masks (step 
425). One suitable random walks algorithm is described in L. 
Grady, Random Walks for Image Segmentation, IEEE Trans 
actions on PattemAnalysis and Machine Intelligence, 28(1 1): 
1768-1783, November 2006, hereby incorporated by refer 
ence. For example, Grady describes a process that, given a 
small number of pixels with user-de?ned (or pre-de?ned) 
labels, can analytically and quickly determine the probability 
that a random walker starting at each unlabeled pixel will ?rst 
reach one of the pre-labeled pixels. By assigning eachpixel to 
the label for which the greatest probability is calculated, a 
high-quality image segmentation may be obtained. Such a 
process can be performed in discrete space (e.g., on a graph) 
using combinatorial analogues of standard operators and 
principles from continuous potential theory, allowing it to be 
applied in arbitrary dimensions on arbitrary graphs. 
[0051] The system can then perform a 3D signed distance 
transform on the re?ned bone segmentation masks to con 
struct signed distance-to-bone features (step 430). The sys 
tem can then again apply a CPD process to produce corre 
spondence meshes of segmentation results (step 435). The 
system uses these correspondence meshes to construct dis 
tance-to-dense landmark features (step 440). 
[0052] As mentioned above, the knee bones are segmented 
?rst for two main reasons. First, the bone surfaces provide 
important spatial constraints for cartilage segmentation. Sec 
ond, it is relatively easier to segment the bones because they 
have more regular and distinctive shapes. 
[0053] Disclosed embodiments represent the shape of a 
bone by a closed triangle mesh M:{P,T} where 
P:{pie?3}i:lN is the set of N mesh points and T:{tie?+ 
3],:1M, is the set of M triangle indices. Given a number of 
training volumes with manual bone annotations, the system 
can use a CPD process to ?nd anatomical correspondences of 
the mesh points and thereof construct the statistical shape 
models with mean shape denoted as M. 
[0054] FIG. 5 illustrates a bone segmentation process in 
accordance with disclosed embodiments, that includes a 
training phase 500 and a detecting phase 520. The training 
phase 500 includes receiving training volumes with manually 
annotated bones or cartilage at 502 (ground truth images), 
performing a CPD process at 503 to produce the correspon 
dence meshes at 504, and performing a PCA process at 505 to 
produce the active shape models at 506, including the mean 
shape and the corresponding shape variation space. 
[0055] The detecting phase 500 uses the active shape mod 
els produced at 506. These are applied to each MR image to be 
processed (the “model” or “testing model”), which are 
received by the system, to determine the testing volumes at 
522. The testing volumes are the areas of the testing models 
that are to be classi?ed as bone, cartilage, or otherwise. The 
“areas” or “portions” of the MR testing models described 
herein are intended to refer to 2D areas or 3D volumes. 

[0056] The system uses pose estimation by marginal space 
learning at 523 to produce the estimated translation, rotation, 
and scaling of the model at 524, so that the testing volume 
corresponds to the mean shape and shape variation space of 
the active shape model. 
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[0057] The system applies model deformation by iterative 
boundary ?tting, using the estimated translation, rotation, and 
scaling of the model at 525, by ?tting the testing volume to the 
active shape model according to the mean shape and shape 
variation space. This produces the initial segmentation at 526. 
[0058] The initial segmentation is the initial classi?cation 
of portions of the testing model into bone, cartilage, or other. 
[0059] The system thenperforms a random walk process on 
the model for boundary re?nement at 527, using the initial 
segmentation, to produce the re?ned segmentation at 528. In 
this process, the system re?nes the boundaries of the testing 
volume with respect to the active shape model. The re?ned 
segmentation is the classi?cation of portions of the testing 
model into bone, cartilage, and other. The system can then 
store the re?ned segmentation as a classi?cation data associ 
ated with the respective testing model, the classi?cation data 
identifying the classi?cation or segmentation of each portion 
of the testing model. This process can also include displaying 
the MR image testing model including indicating portions of 
the MR image testing model corresponding to the classi?ca 
tion of each voxel. “Receiving” by the system, as used herein, 
can include loading from storage or receiving from another 
device or process. 
[0060] In this embodiment, the whole bone segmentation 
framework can include three major steps: pose estimation (to 
determine the estimated translation, rotation, and scaling of 
the model), model deformation (to properly apply translation, 
rotation, and scaling of the model), and boundary re?nement 
(to adjust boundaries to ?t the testing volume to the active 
shape model). 
[0061] Pose Estimation: For a given volume V, the bone is 
?rst localizeAd by searching for the optimal pose parameters (t, 
r, s), where t represents the translation, r represents the rota 
tion, and s represents the anisotropic scaling. 

[0062] To speed up detection, an ef?cient inference process 
referred to as marginal space learning (MSL) is employed to 
decompose the exhaustive search in the original parameter 
space into three sequential estimation problems each in a 
lower dimensional marginal space, as represented by: 

The shape is initialized by linearly transforming the mean 
shape M with estimated pose parameters. 
[0063] An acceptable MSL process is described in Y. 
Zheng, A. Barbu, M. Georgescu, M. Scheuring, and D. 
Comaniciu. Four-Chamber Heart Modeling and Automatic 
Segmentation for 3D Cardiac CT Volumes Using Marginal 
Space Learning and Steerable Features. IEEE Trans. Med. 
lmag., 27(1 1): 1 668-1 681, 2008, hereby incorporated by ref 
erence. For example, ZHeng describes a MSL process for 
solving a 9-D similarity transformation search problem for 
localizing heart chambers. After determining the pose of the 
heart chambers, this process estimates the 3-D shape through 
leaming-based boundary delineation. This MSL process can 
incrementally learn classi?ers on projected sample distribu 
tions by splitting the estimation into three problems: position 
estimation, position-orientation estimation, and full similar 
ity transformation estimation. Such a method can also use a 
leaming-based 3-D boundary detector to guide the shape 
deformation in the ASM framework. 
[0064] Model Deformation: At this stage, the initial shape 
is deformed to ?t the boundary by searching and moving each 
mesh point pl- (pl-6P) along the normal direction to a new point 
with the highest probability generated by a set of boundary 
classi?ers. The overall deformation of all mesh points is 
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projected to the variation subspace of the built statistical 
shape model. This boundary ?tting process is repeated several 
times until convergence. 
[0065] Boundary Re?nement: To further improve the seg 
mentation accuracy, the system uses the random walks pro 
cess to re?ne the bone boundary. The anatomical correspon 
dence of mesh points may be lost at this stage. Hence, the 
system uses the CPD process to register the two sets of mesh 
points before and after random walks to obtain anatomically 
equivalent landmarks on the re?ned bone surface, which will 
be used to extract distance features as will be described in 
more detail below. 

[0066] The system can perform cartilage classi?cation that 
involves feature extraction, iterative semantic context feature 
boosting, and post-processing by graph cut optimization. 
Given all three knee bones being segmented, the system ?rst 
extracts a band of interest within a maximum distance thresh 
old from each of the bone surface. This can be ef?ciently 
achieved by distance transform of binary bone masks in linear 
time. By classifying only voxels in the band of interest, it not 
only greatly reduces the computational cost for testing but 
also simpli?es the training by removing irrelevant negative 
voxels. 
[0067] Feature Extraction: For each voxel with spatial 
coordinate x, the system can construct a number of base 
features which can be categorized into three subsets. Intensity 
features include the voxel intensity and its gradient magni 
tude, respectively: f 1 (x):l(x), f2(x):||Vl(x)||. Distance fea 
tures measure the signed Euclidean distances of each voxel to 
the different knee bone boundaries: f3 (x):dF(x), f4(x):dI(x), 
f5 (x):dP(x) where dF is the signed distance to the femur, tho 
tibia, and dP to patella. The system also uses the linear com 
binations: 

[0068] These features are useful because the sum features 
f6 and f8 measure whether voxel x locates within the narrow 
space between two bones, and the difference features f7 and f9 
measure which bone it is closer to. Sum features f6 and f7, in 
addition to intensity feature fl, separate tibial cartilage from 
femoral and patellar cartilages. 
[0069] Given the prior knowledge that the cartilage can 
only grow in certain area on the bone surface, it is useful for 
the cartilage segmentation to not only know how close the 
voxel is to the bone surface, but also where it is anatomically. 
Therefore, the system uses the following distance features to 
the densely registered landmarks on the bone surface as 
described herein: 

where z<g is the spatial coordinate of the C” landmark of all 
bone mesh points. Q is randomly generated in the training of 
classi?ers due to the great number of mesh points available. 
[0070] Context features compare the intensity of the cur 
rent voxel x and another voxel x+u with random offset u: 

where u is a random offset vector. This subset of features, 
referred to herein as “random shift intensity difference” 
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(RSID) features, capture the context information in different 
ranges by randomly generating a large number of different 
values of u in training. These features can be used to solve 
pose classi?cation and keypoint recognition problems. 
[0071] Iterative semantic context feature boosting: Dis 
closed embodiments can employ a multi-pass iterative clas 
si?cation process to automatically exploit the semantic con 
text for multiple object segmentation problems. In each pass, 
the generated probability maps will be used to extract the 
context embedded features to boost the classi?cation perfor 
mance of the next pass. 

[0072] FIG. 6 illustrates a two-pass iterative classi?cation 
process with the random forest selected as the base classi?er 
for each pass, but the method can be extended to more pass 
iterations with the use of other discriminative classi?ers. 
[0073] This cartilage segmentation process comprises two 
stage classi?ers, also called two-pass classi?cation. This 
embodiment includes a training phase 600 and a testing phase 
630, which can be performed at the same time or can be 
performed independently. That is, the training phase 600 can 
be completed, and its results stored, at one time, and the 
testing phase 630 can be performed at a later time using the 
results of the training phase 600. 
[0074] The training phase 600 is based on comparing a set 
of training images 602 with the cartilage ground truth infor 
mation 604 manually annotated in each training image. The 
training outputs are the ?rst pass random forest classi?ers 610 
with the selected features, thresholds, class probabilities, and 
other parameters. The ?rst pass random forest classi?ers 610 
can be used to produce ?rst pass probability map 606. 
[0075] The training phase 600 can then include a second 
pass where the cartilage ground truth information 604 is 
compared to the ?rst pass probability map 606 to produce the 
second pass random forest classi?ers 620 with the selected 
features, thresholds, class probabilities, and otherparameters. 
The second pass random forest 620 can be used to produce 
second pass probability map 608. 
[0076] During the testing phase 630, for any testing image 
632 (any given image of an MR image testing model where 
there is no ground truth), these random forest classi?ers can 
be used at 633 to automatically classify each voxel in the 
image into one of the four classes, femoral cartilage, tibial 
cartilage, patellar cartilage and background (everything else). 
[0077] More speci?cally, each testing image is compared to 
the ?rst pass random forest classi?ers 610 at 633 to produce 
?rst pass probability map 634, generally of the same size as 
the input images. The value of each voxel in the ?rst pass 
probability map 634 indicates the likelihood of this voxel 
being any of the four classes. Generally, the voxel will be 
classi?ed as the one of the four classes with the maximum 
likelihood. 
[0078] The ?rst pass probability maps 634 obtained by the 
?rst pass random forest classi?ers 610 can be used by the 
second pass random forest classi?ers 620 at 635 to improve 
the classi?cation performance. The second pass probability 
map 636, obtained using the second pass random forest clas 
si?ers 620 at 635, can be used as the ultimate class decision, 
and the system can then store classi?cation data 640, corre 
sponding to the second pass probability map, as associated 
with the MR image testing model. 
[0079] Finally, as part of the testing phase 630 or separately, 
the system can segment each of the testing images at 650. This 
process can include using the classi?cation data 640 to seg 
ment each testing image into different areas, such as general 
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bone areas, cartilage areas, and other or background areas, or 
speci?c areas, such as patella areas, patellar cartilage areas, 
femur areas, femoral cartilage areas, tibia areas, and tibial 
cartilage areas. This process can include storing this segmen 
tation data with or as part of the classi?cation data, or can 
include annotating each testing image with the segmentation 
data, as metadata or otherwise, so that when the image is 
displayed to a user, the corresponding segmentation data can 
also be displayed to label or otherwise indicate (such as by 
color coding) the different segmentation areas. The segmen 
tation of the testing image into different areas can be based on 
assigning each voxel to a respective areas according to that 
voxel’s classi?cation. 
[0080] Of course, the system can be extended more than 
two stages of classi?ers, with each stage utilizing the prob 
ability map obtained from the previous stage, and the prob 
ability map output from the last stage used as the ultimate 
class decision. 
[0081] Semantic context features: After each pass of the 
classi?cation, probability maps are generated and used to 
extract semantic context features as de?ned below: 

where P F, PT, and P P stand for the femoral, tibia, and patellar 
cartilage probability map, respectively. In the same fashion as 
the RSID features above, the system can compare the prob 
ability response of two voxels with random shift 

which is called random shift probability difference features 
(RSPD), providing semantic context information because the 
probability map values are directly associated with anatomi 
cal labels, compared to the original intensity volume. 
[0082] In such a multi-pass classi?cation system, the prob 
ability map of each subsequent pass shows a quantitative 
improvement with a less noisy response. 
[0083] Post processing by graph cut optimization: After the 
multi-pass iterative classi?cation, the system can use the 
probabilities of the four classes, background, femoral, tibial, 
and patellar cartilage, to construct the energy function and 
perform the multi-label graph cut to re?ne the segmentation 
result with smoothness constraints. An acceptable graph cut 
process is described inY. Boykov, O. Veksler, and R. Zabih. 
Fast Approximate Energy Minimization via Graph Cuts, 
IEEE Transactions on Pattern Analysis and Machine Intelli 
gence, 23(11):1222-1239, November 2001, hereby incorpo 
rated by reference. For example, Boykov describes processes 
based on graph cuts that ef?ciently ?nd a local minimum with 
respect to expansion moves and swap moves. These moves 
can simultaneously change the labels of arbitrarily large sets 
of pixels. Such a process ?nds a labeling within a known 
factor of the global minimum and handles general energy 
functions. These processes allow important cases of discon 
tinuity-preserving energies. 
[0084] The graph cut algorithm assigns a label l(x) to each 
voxel x and a label l(y) to a voxel y, such that the energy E 
below is minimized: 
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where L is the global label con?guration, N is the neighbor 
hood system, Vx,y(?) is the smoothness energy, and DAB) is 
the data energy. The system de?nes 

dicoxlw takes value 1 when l(x) and l(y) are different labels, 
and takes value 0 when l(x):l(y). PZ(X)(x) takes the value 
PF(x), PI(x), PP(x) or 1—PF(x)—PI(x)—PP(x), depending on 
the label l(x). 7t and o are two parameters. 7» speci?es the 
weight of data energy versus smoothness energy, while 0 
represents the image noise. 
[0085] Of course, those of skill in the art will recognize that, 
unless speci?cally indicated or required by the sequence of 
operations, certain steps in the processes described above 
may be omitted, performed concurrently or sequentially, or 
performed in a different order. Various features and processes 
of embodiments described herein may be combined with each 
other within the scope of this disclosure. 
[0086] Those skilled in the art will recognize that, for sim 
plicity and clarity, the full structure and operation of all data 
processing systems suitable for use with the present disclo 
sure is not being illustrated herein. Instead, only so much of a 
data processing system as is unique to the present disclosure 
or necessary for an understanding of the present disclosure is 
depicted and described. The remainder of the construction 
and operation of data processing system 100 may conform to 
any of the various current implementations and practices 
known in the art. 

[0087] It is important to note that while the disclosure 
includes a description in the context of a fully functional 
system, those skilled in the art will appreciate that at least 
portions of the mechanism of the present disclosure are 
capable of being distributed in the form of instructions con 
tained within a machine-usable, computer-usable, or com 
puter-readable medium in any of a variety of forms, and that 
the present disclosure applies equally regardless of the par 
ticular type of instruction or signal bearing medium or storage 
medium utilized to actually carry out the distribution. 
Examples of machine usable/readable or computer usable/ 
readable mediums include: nonvolatile, hard-coded type 
mediums such as read only memories (ROMs) or erasable, 
electrically programmable read only memories (EEPROMs), 
and user-recordable type mediums such as ?oppy disks, hard 
disk drives and compact disk read only memories (CD 
ROMs) or digital versatile disks (DVDs). 
[0088] Although an exemplary embodiment of the present 
disclosure has been described in detail, those skilled in the art 
will understand that various changes, substitutions, varia 
tions, and improvements disclosed herein may be made with 
out departing from the spirit and scope of the disclosure in its 
broadest form. 
[0089] None of the description in the present application 
should be read as implying that any particular element, step, 
or function is an essential element which must be included in 
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the claim scope: the scope of patented subject matter is 
de?ned only by the allowed claims. Moreover, none of these 
claims are intended to invoke paragraph six of 35 USC §112 
unless the exact words “means for” are followed by a parti 
ciple. 
What is claimed is: 
1. A method for classifying bone and cartilage in a mag 

netic resonance (MR) images, comprising: 
receiving, in a data processing system, an MR image test 

ing model, the testing model including unclassi?edbone 
and cartilage portions; 

determining, by the data processing system, a testing vol 
ume of the testing model, the testing volume including 
areas of the testing model to be classi?ed as bone or 
cartilage; 

modifying the testing model, by the data processing sys 
tem, so that the testing volume corresponds to a mean 
shape and a shape variation space of an active shape 
model; 

producing an initial classi?cation of the testing volume 
into bone areas and cartilage areas, by the data process 
ing system, by ?tting the testing volume to the mean 
shape and the shape variation space of the active shape 
model; 

producing a re?ned classi?cation of the testing volume into 
bone areas and cartilage areas, by the data processing 
system, by re?ning the boundaries of the testing volume 
with respect to the active shape model; and 

segmenting the MR image testing model into different 
areas corresponding to bone areas and cartilage areas 
according to the re?ned classi?cation. 

2. The method of claim 1, further comprising: 
receiving a plurality of training volumes, the training vol 
umes including known areas of bone and cartilage; 

performing a coherent point drift (CPD) process to produce 
correspondence meshes that each correspond to a 
respective each training volume; 

performing a principal component analysis (PCA) process 
to produce PCA models from the correspondence 
meshes; and 

producing the active shape model from the PCA models. 
3. The method of claim 2, wherein the CPD process 

includes performing a point-set registration on the training 
volumes. 

4. The method of claim 1, wherein modifying the testing 
model includes applying a model deformation to the testing 
model, the model deformation including translation, rotation, 
and scaling of the testing model. 

5. The method of claim 1, wherein the data processing 
system uses pose estimation by marginal space learning to 
produce estimated translation, rotation, and scaling required 
for the modi?cation of the testing model. 

6. The method of claim 1, wherein re?ning the boundaries 
of the testing volume with respect to the active shape model 
includes performing a random walk process. 

7. The method of claim 1, wherein the MR image testing 
model is an MR image of a human knee. 

8. The method of claim 1, wherein segmenting the MR 
image testing model into different areas corresponding to 
bone areas and cartilage areas, includes segmenting the MR 
image testing model into a patella area, a patellar cartilage 
area, a femur area, a femoral cartilage area, a tibia area, and a 
tibial cartilage area. 
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9. The method of claim 1, wherein the data processing 
system annotates the MR testing image model with segmen 
tation data corresponding to the different areas. 

10. The method of claim 1, wherein the data processing 
system displays the MR image testing model including indi 
cating the different areas on the MR image testing model. 

11. A method for classifying bone and cartilage in a mag 
netic resonance (MR) images, comprising: 

receiving, in a data processing system, an MR image test 
ing model, the testing model including unclassi?edbone 
and cartilage portions represented by a plurality of vox 
els; 

performing a ?rst classi?cation process, by the data pro 
cessing system, using ?rst pass random forest classi?ers 
to produce a ?rst pass probability map that classi?es 
each voxel of the testing model as one of femoral carti 
lage, tibial cartilage, patellar cartilage, or background; 

performing a second classi?cation process, by the data 
processing system, using second pass random forest 
classi?ers to produce a second pass probability map that 
classi?es each voxel of the ?rst pass probability map as 
one of femoral cartilage, tibial cartilage, patellar carti 
lage, or background; 

storing classi?cation data in the data processing system, 
corresponding to the second pass probability map, as 
associated with the MR image testing model and indi 
cating the classi?cation of each voxel; and 

displaying the MR image testing model including indicat 
ing portions of the MR image testing model correspond 
ing to the classi?cation of each voxel. 

12. A data processing system, comprising: 
a processor; and 

an accessible memory, the data processing system con?g 
ured to 

receive an MR image testing model, the testing model 
including unclassi?ed bone and cartilage portions; 

determine a testing volume of the testing model, the testing 
volume including areas of the testing model to be clas 
si?ed as bone or cartilage; 

modify the testing model so that the testing volume corre 
sponds to a mean shape and a shape variation space of an 
active shape model; 

produce an initial classi?cation of the testing volume into 
bone areas and cartilage areas; 

produce a re?ned classi?cation of the testing volume into 
bone areas and cartilage areas by re?ning the boundaries 
of the testing volume with respect to the active shape 
model; and 

segment the MR image testing model into different areas 
corresponding to bone areas and cartilage areas accord 
ing to the re?ned classi?cation. 

13. The data processing system of claim 12, wherein the 
data processing system is further con?gured to 

receive a plurality of training volumes, the training vol 
umes including known areas of bone and cartilage; 

perform a coherent point drift (CPD) process to produce 
correspondence meshes that each correspond to a 
respective each training volume; 
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perform a principal component analysis (PCA) process to 
produce PCA models from the correspondence meshes; 
and 

produce the active shape model from the PCA models. 
14. The data processing system of claim 13, wherein the 

CPD process includes performing a point-set registration on 
the training volumes. 

15. The data processing system of claim 12, wherein modi 
fying the testing model includes applying a model deforma 
tion to the testing model, the model deformation including 
translation, rotation, and scaling of the testing model. 

16. The data processing system of claim 12, wherein the 
data processing system uses pose estimation by marginal 
space learning to produce estimated translation, rotation, and 
scaling required for the modi?cation of the testing model. 

17. The data processing system of claim 12, wherein re?n 
ing the boundaries of the testing volume with respect to the 
active shape model includes performing a random walk pro 
cess. 

18. The data processing system of claim 12, wherein the 
MR image testing model is an MR image of a human knee. 

19. The data processing system of claim 12, wherein seg 
menting the MR image testing model into different areas 
corresponding to bone areas and cartilage areas, includes 
segmenting the MR image testing model into a patella area, a 
patellar cartilage area, a femur area, a femoral cartilage area, 
a tibia area, and a tibial cartilage area. 

20. The data processing system of claim 12, wherein the 
data processing system annotates the MR testing image 
model with segmentation data corresponding to the different 
areas. 

21. The data processing system of claim 12, wherein the 
data processing system displays the MR image testing model 
including indicating the different areas on the MR image 
testing model. 

22. A data processing system, comprising: 
a processor; and 
an accessible memory, the data processing system con?g 

ured to 
receive an MR image testing model, the testing model 

including unclassi?ed bone and cartilage portions rep 
resented by a plurality of voxels; 

perform a ?rst classi?cation process using ?rst pass ran 
dom forest classi?ers to produce a ?rst pass probability 
map that classi?es each voxel of the testing model as one 
of femoral cartilage, tibial cartilage, patellar cartilage, or 
background; 

perform a second classi?cation process using second pass 
random forest classi?ers to produce a second pass prob 
ability map that classi?es each voxel of the ?rst pass 
probability map as one of femoral cartilage, tibial carti 
lage, patellar cartilage, or background; 

store classi?cation data, corresponding to the second pass 
probability map, as associated with the MR image test 
ing model and indicating the classi?cation of each voxel; 
and 

display the MR image testing model including indicating 
portions of the MR image testing model corresponding 
to the classi?cation of each voxel. 

* * * * * 


